Skip to main content
Log in

An advanced modelling to improve the prediction of thermal distribution in friction stir welding (FSW) for difficult to weld materials

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This study explores the thermal distribution of high-strength engineering alloys during the friction stir welding process (FSW). Materials which are difficult to weld or are unweldable by conventional welding processes can be successfully welded by FSW. The specific analysis and modification of the process require an understanding of the actual mechanism of the process. Therefore, a transient, three-dimensional, thermo-mechanical finite element model (FEM) for FSW was developed. The model calculates the temperature distribution during the welding process considering various boundary conditions such as rotational speed, linear speed, normal pressure, tool diameter and material properties. The thermo-mechanical FEM calculations consider the effects of conduction and convection heat transfer. The numerical results are successfully compared and validated by experimental results published in the literature for aluminium alloy, titanium alloy and steel (mild and bainitic) as workpiece materials. The model was found to be useful for understanding the effects of changes in different system parameters, and for selecting the optimum welding conditions before undertaking high-cost physical testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mahoney MW, Rhodes CG, Flintoff JG et al (1998) Properties of friction-stir-welded 7075 T651 aluminum. Met Mater Trans A 29:1955–1964. https://doi.org/10.1007/s11661-998-0021-5

    Article  Google Scholar 

  2. Rhodes CG, Mahoney MW, Bingel WH et al (1997) Effects of friction stir welding on microstructure of 7075 aluminum. Scr Mater 36:69–75. https://doi.org/10.1016/S1359-6462(96)00344-2

    Article  Google Scholar 

  3. Do Vale NL, Torres EA, de Santos TFA et al (2018) Effect of the energy input on the microstructure and mechanical behavior of AA2024-T351 joint produced by friction stir welding. J Braz Soc Mech Sci Eng 40:467. https://doi.org/10.1007/s40430-018-1372-5

    Article  Google Scholar 

  4. Patil S, Tay YY, Baratzadeh F, Lankarani H (2018) Modeling of friction-stir butt-welds and its application in automotive bumper impact performance Part 1. Thermo-mechanical weld process modeling. J Mech Sci Technol 32:2569–2575. https://doi.org/10.1007/s12206-018-0514-0

    Article  Google Scholar 

  5. Altenkirch J, Steuwer A, Peel M et al (2008) The effect of tensioning and sectioning on residual stresses in aluminium AA7749 friction stir welds. Mater Sci Eng A 488:16–24. https://doi.org/10.1016/j.msea.2007.10.055

    Article  Google Scholar 

  6. Leonard AJ, Shercliff HR, Withers PJ (2009) Friction stir welding of aluminium alloys. Int Mater Rev 54:49–93. https://doi.org/10.1179/174328009X411136

    Article  Google Scholar 

  7. Rao KV (2018) Evaluation of welding characteristics using three-dimensional finite element simulation and experimentation for FSW of aluminum 6061. J Braz Soc Mech Sci Eng 40:86. https://doi.org/10.1007/s40430-018-0963-5

    Article  Google Scholar 

  8. Lee WB, Jung SB (2004) The joint properties of copper by friction stir welding. Mater Lett 58:1041–1046. https://doi.org/10.1016/j.matlet.2003.08.014

    Article  Google Scholar 

  9. Eslami N, Harms A, Henke B et al (2019) Electrical and mechanical properties of friction stir welded Al–Cu butt joints. Weld World 63:903–911. https://doi.org/10.1007/s40194-019-00719-y

    Article  Google Scholar 

  10. Nandan R, Lienert TJ, DebRoy T (2008) Toward reliable calculations of heat and plastic flow during friction stir welding of Ti–6Al–4V alloy. Int J Mater Res 99:434–444. https://doi.org/10.3139/146.101655

    Article  Google Scholar 

  11. Chao YJ, Qi X, Tang W (2003) Heat transfer in friction stir welding: experimental and numerical studies. J Manuf Sci Eng 125:138–145. https://doi.org/10.1115/1.1537741

    Article  Google Scholar 

  12. Nandan R, Roy GG, Lienert TJ, Debroy T (2007) Three-dimensional heat and material flow during friction stir welding of mild steel. Acta Mater 55:883–895. https://doi.org/10.1016/j.actamat.2006.09.009

    Article  Google Scholar 

  13. Kitamura K, Fujii H, Iwata Y et al (2013) Flexible control of the microstructure and mechanical properties of friction stir welded Ti–6Al–4V joints. Mater Des 46:348–354. https://doi.org/10.1016/j.matdes.2012.10.051

    Article  Google Scholar 

  14. Ramakrishna RVSM, Sankara Rao KB, Reddy GM, Gautam JP (2018) Friction stir welding of advanced high strength (bainitic) steels for automotive applications. Mater Today Proc 5:17139–17146. https://doi.org/10.1016/j.matpr.2018.04.122

    Article  Google Scholar 

  15. Çam G, İpekoğlu G, Küçükömeroğlu T, Aktarer SM (2017) Applicability of friction stir welding to steels. J Achiev Mater Manuf Eng 80:65–85. https://doi.org/10.5604/01.3001.0010.2027

    Article  Google Scholar 

  16. Gangwar K, Ramulu M (2018) Friction stir welding of titanium alloys: a review. Mater Des 141:230–255. https://doi.org/10.1016/j.matdes.2017.12.033

    Article  Google Scholar 

  17. Bhadeshia HKDH, Debroy T (2009) Critical assessment: friction stir welding of steels. Sci Technol Weld Join 14:193–196. https://doi.org/10.1179/136217109X421300

    Article  Google Scholar 

  18. Colegrove PA (2003) Modelling of friction stir welding by Paul Andrew Colegrove. University of Cambridge, Cambridge

    Google Scholar 

  19. Tang W, Guo X, McClure JC et al (1998) Heat input and temperature distribution in friction stir welding. J Mater Process Manuf Sci 7:163–172. https://doi.org/10.1106/55TF-PF2G-JBH2-1Q2B

    Article  Google Scholar 

  20. Mishra RS, Mahoney MW (2007) Friction stir welding and processing. ASM Int, Ohio

    Google Scholar 

  21. Dong P, Lu F, Hong JK, Cao Z (2013) Coupled thermomechanical analysis of friction stir welding process using simplified models. Sci Technol Weld Join 6:281–287. https://doi.org/10.1179/136217101101538884

    Article  Google Scholar 

  22. He X, Gu F, Ball A (2014) Progress in materials science a review of numerical analysis of friction stir welding. Prog Mater Sci 65:1–66. https://doi.org/10.1016/j.pmatsci.2014.03.003

    Article  Google Scholar 

  23. Neto DM, Neto P (2013) Numerical modeling of friction stir welding process: a literature review. Int J Adv Manuf Technol 65:115–126. https://doi.org/10.1007/s00170-012-4154-8

    Article  Google Scholar 

  24. Okuyucu H, Kurt A, Arcaklioglu E (2007) Artificial neural network application to the friction stir welding of aluminum plates. Mater Des 28:78–84. https://doi.org/10.1016/j.matdes.2005.06.003

    Article  Google Scholar 

  25. Krishnan MM, Maniraj J, Deepak R, Anganan K (2018) Prediction of optimum welding parameters for FSW of aluminium alloys AA6063 and A319 using RSM and ANN. Mater Today Proc 5:716–723. https://doi.org/10.1016/j.matpr.2017.11.138

    Article  Google Scholar 

  26. Bastier A, Maitournam MH, Roger F, Van KD (2008) Modelling of the residual state of friction stir welded plates. J Mater Process Technol 200:25–37. https://doi.org/10.1016/j.jmatprotec.2007.10.083

    Article  Google Scholar 

  27. Hamilton C, Sommers A, Dymek S (2009) A thermal model of friction stir welding applied to Sc-modified Al–Zn–Mg–Cu alloy extrusions. Int J Mach Tools Manuf 49:230–238. https://doi.org/10.1016/j.ijmachtools.2008.11.004

    Article  Google Scholar 

  28. Tang J, Shen Y (2016) Numerical simulation and experimental investigation of friction stir lap welding between aluminum alloys AA2024 and AA7075. J Alloys Compd 666:493–500. https://doi.org/10.1016/j.jallcom.2016.01.138

    Article  Google Scholar 

  29. Padmanaban R, Kishore VR, Balusamy V (2014) Numerical simulation of temperature distribution and material flow during friction stir welding of dissimilar aluminum alloys. Procedia Eng 97:854–863. https://doi.org/10.1016/j.proeng.2014.12.360

    Article  Google Scholar 

  30. Song M, Kovacevic R (2004) Heat transfer modelling for both workpiece and tool in the friction stir welding process: a coupled model. Proc Inst Mech Eng Part B J Eng Manuf 218:17–33. https://doi.org/10.1243/095440504772830174

    Article  Google Scholar 

  31. Su H, Wu CS, Pittner A, Rethmeier M (2014) Thermal energy generation and distribution in friction stir welding of aluminum alloys. Energy 77:720–731. https://doi.org/10.1016/j.energy.2014.09.045

    Article  Google Scholar 

  32. Medhi T, Saha B, Debbarma S, Saha SC (2015) Thermal modelling and effect of process parameters in friction stir welding. Mater Today Proc 2:3178–3187. https://doi.org/10.1016/j.matpr.2015.07.112

    Article  Google Scholar 

  33. Zhang Z, Liu YL, Chen JT (2009) Effect of shoulder size on the temperature rise and the material deformation in friction stir welding. Int J Adv Manuf Technol 45:889–895. https://doi.org/10.1007/s00170-009-2034-7

    Article  Google Scholar 

  34. Nathan SR, Balasubramanian V, Malarvizhi S, Rao AG (2015) Effect of welding processes on mechanical and microstructural characteristics of high strength low alloy naval grade steel joints. Def Technol 11:308–317. https://doi.org/10.1016/j.dt.2015.06.001

    Article  Google Scholar 

  35. Enomoto S (2003) Friction stir welding: research and industrial applications. Weld Int 17:341–345. https://doi.org/10.1533/wint.2003.3114

    Article  Google Scholar 

  36. Feng Z, Santella ML, David SA et al (2005) Friction stir spot welding of advanced high-strength steels: a feasibility study. SAE Tech Pap 1:1248. https://doi.org/10.4271/2005-01-1248

    Article  Google Scholar 

  37. Yokoyama H, Mitao S, Yamamoto S et al (2001) High strength bainitic steel rails for heavy haul railways with superior damage resistance. NKK Tech Rev 84:44–51

    Google Scholar 

  38. Hajizad O, Kumar A, Li Z et al (2019) Influence of microstructure on mechanical properties of bainitic steels in railway applications. Metals (Basel) 9:778. https://doi.org/10.3390/met9070778

    Article  Google Scholar 

  39. Prasanna P, Rao BS, Rao GKM (2010) Finite element modeling for maximum temperature in friction stir welding and its validation. Int J Adv Manuf Technol 51:925–933. https://doi.org/10.1007/s00170-010-2693-4

    Article  Google Scholar 

  40. Chen CM, Kovacevic R (2003) Finite element modeling of friction stir welding: thermal and thermomechanical analysis. Int J Mach Tools Manuf 43:1319–1326. https://doi.org/10.1016/S0890-6955(03)00158-5

    Article  Google Scholar 

  41. Assidi M, Fourment L, Guerdoux S, Nelson T (2010) Friction model for friction stir welding process simulation: calibrations from welding experiments. Int J Mach Tools Manuf 50:143–155. https://doi.org/10.1016/j.ijmachtools.2009.11.008

    Article  Google Scholar 

  42. Heurtier P, Jones MJ, Desrayaud C et al (2006) Mechanical and thermal modelling of friction stir welding. J Mater Process Technol 171:348–357. https://doi.org/10.1016/j.jmatprotec.2005.07.014

    Article  Google Scholar 

  43. Soundararajan V, Zekovic S, Kovacevic R (2005) Thermo-mechanical model with adaptive boundary conditions for friction stir welding of Al 6061. Int J Mach Tools Manuf 45:1577–1587. https://doi.org/10.1016/j.ijmachtools.2005.02.008

    Article  Google Scholar 

  44. Hamilton C, Dymek S, Sommers A (2008) A thermal model of friction stir welding in aluminum alloys. Int J Mach Tools Manuf 48:1120–1130. https://doi.org/10.1016/j.ijmachtools.2008.02.001

    Article  Google Scholar 

  45. Schmidt H, Hattel J, Wert J (2004) An analytical model for the heat generation in friction stir welding. Model Simul Mater Sci Eng 12:143–157. https://doi.org/10.1088/0965-0393/12/1/013

    Article  Google Scholar 

  46. Kumar R, Singh K, Pandey S (2012) Process forces and heat input as function of process parameters in AA5083 friction stir welds. Trans Nonferrous Met Soc China 22:288–298. https://doi.org/10.1016/S1003-6326(11)61173-4

    Article  Google Scholar 

  47. Quintana KJ, Silveira JL (2018) Mechanistic models for the forces in FSW of aluminum alloy 5052-H34. Int J Adv Manuf Technol 96:3993–4008. https://doi.org/10.1007/s00170-018-1859-3

    Article  Google Scholar 

  48. Rai R, De A, Bhadeshia HKDH, DebRoy T (2011) Review: friction stir welding tools. Sci Technol Weld Join 16:325–342. https://doi.org/10.1179/1362171811Y.0000000023

    Article  Google Scholar 

  49. Niu QL, Zheng XH, Ming WW et al (2013) Friction and wear performance of titanium alloys against tungsten carbide under dry sliding and water lubrication. Tribol Trans 56:101–108. https://doi.org/10.1080/10402004.2012.729296

    Article  Google Scholar 

  50. Venkatesh VC, Izman S (2007) Precision engineering, 1st edn. Tata McGraw-Hill Publishing Company Limited, New York

    Google Scholar 

  51. Li Q, Pan C, Jiao Y, Hu K (2018) Research on PCBN tool dry cutting GCr15. Machines 28:1–9. https://doi.org/10.3390/machines6030028

    Article  Google Scholar 

  52. Meran C, Kovan V, Alptekin A (2007) Friction stir welding of AISI 304 austenitic stainless steel. Materwiss Werksttech 38:829–835. https://doi.org/10.1002/mawe.200700214

    Article  Google Scholar 

  53. Das S, Haldar A (2014) Continuously cooled ultrafine bainitic steel with excellent strength-elongation combination. Metall Mater Trans A Phys Metall Mater Sci 45:1844–1854. https://doi.org/10.1007/s11661-013-2173-1

    Article  Google Scholar 

  54. Ozlu E, Budak E, Molinari A (2009) Analytical and experimental investigation of rake contact and friction behavior in metal cutting. Int J Mach Tools Manuf 49:865–875. https://doi.org/10.1016/j.ijmachtools.2009.05.005

    Article  Google Scholar 

  55. Edwards P, Ramulu M (2010) Peak temperatures during friction stir welding of Ti–6Al–4V. Sci Technol Weld Join 15:468–472. https://doi.org/10.1179/136217110X12665778348425

    Article  Google Scholar 

  56. Zhou L, Liu HJ, Liu P, Liu QW (2009) The stir zone microstructure and its formation mechanism in Ti–6Al–4V friction stir welds. Scr Mater 61:596–599. https://doi.org/10.1016/j.scriptamat.2009.05.029

    Article  Google Scholar 

  57. Wade M, Reynolds AP (2010) Friction stir weld nugget temperature asymmetry. Sci Technol Weld Join 15:64–69. https://doi.org/10.1179/136217109X12562846839150

    Article  Google Scholar 

  58. Cortés VHV, Guerrero GA, Granados IM et al (2019) Effect of retained austenite and non-metallic inclusions on the mechanical properties of resistance spot welding nuggets of low-alloy TRIP steels. Metals (Basel) 9:52–63. https://doi.org/10.3390/met9101064

    Article  Google Scholar 

Download references

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasin Sarikavak.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Technical Editor: Izabel Fernanda Machado.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarikavak, Y. An advanced modelling to improve the prediction of thermal distribution in friction stir welding (FSW) for difficult to weld materials. J Braz. Soc. Mech. Sci. Eng. 43, 4 (2021). https://doi.org/10.1007/s40430-020-02735-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02735-2

Keywords

Navigation