Skip to main content

Advertisement

Log in

A Modular MIMO Millimeter-Wave Imaging Radar System for Space Applications and Its Components

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

This article presents the design and prototyping of components for a modular multiple-input-multiple-output (MIMO) millimeter-wave radar for space applications. A single radar panel consists of 8 transmitters (TX) and 8 receivers (RX), which can be placed several times on the satellite to realize application-specific radar apertures and hence different cross-range resolutions. The radar chirp signals are generated by SiGe:C BiCMOS direct-digital-synthesizers (DDS) in the frequency range of 1 to 10.5GHz with a chirp repetition rate of < 1μs within each TX and RX. The latter allows for easy interfaces in the MHz range in between the TX/RX units and therefore optimized 2-D sparse antenna arrays with rather large distances in between the TX/RX antennas. Furthermore, this allows for ideally linear frequency modulated continuous-waveforms (FMCW) in conjunction with phase-shift-keying (PSK) radar signals and enables simultaneous operation of all TX when code division multiplex (CDMA) modulation schemes are applied. Comparably low complexity of the TX/RX units has been achieved by applying straightforward frequency plans to signal generation and detection but comes with challenging requirements for the individual active and passive components. Tackled by thin film technology on alumina and the recently developed SiGe and InP semiconductor technologies, which have been further optimized in terms of process maturity and space qualification. Upconversion and downconversion to and from 85 to 94.5GHz are performed by double balanced Gilbert mixers realized with InP double heterojunction bipolar transistor technology (DHBT) and 42-GHz local oscillator signals from SiGe:C BiCMOS VCO synthesizer using phase-locked-loops (PLL). InP DHBT power amplifiers and low-noise amplifiers allow for output power levels of 15dBm and > 30dB gain with noise figure values of 9dB, respectively. The MIMO radar utilizes patch antenna arrays on organic multilayer printed circuit boards (PCB) with 18dBi gain and 18 half power beamwidth (HPBW). Generation of power supply and control signals, analog-to-digital conversion (ADC), and radar signal processing are provided centrally to each panel. The radar supports detection and tracking of satellites in distances up to 1000m and image generation up to 20m, which is required to support orbital maneuvers like satellite rendezvous and docking for non-cooperative satellites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63
Fig. 64
Fig. 65
Fig. 66
Fig. 67
Fig. 68
Fig. 69
Fig. 70
Fig. 71
Fig. 72
Fig. 73
Fig. 74

Similar content being viewed by others

References

  1. C. Weitkamp, Lidar - Range-Resolved Optical Remote Sensing of the Atmosphere, Springer, 2005, ISBN 0-387-40075-3.

  2. A. K. Maini, et al., Satellite Technology - Principles and Applications, Wiley, 2007 ISBN 0-470-03335-5.

  3. V. C. Chen, The Micro-Doppler Effect in Radar, Artech House, 2019, ISBN 9781630815462.

  4. D. Bleh, et al., “W-Band Time-Domain Multiplexing FMCW MIMO Radar for Far-Field 3-D Imaging,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 9, pp. 3474–3484, 2017.

  5. R. Feger, et al., “A frequency-division MIMO FMCW radar system using delta-sigma-based transmitters,” IEEE-MTT-S Int. Microw. Symp. Dig., 2014.

  6. IHP GmbH, “0.25 mm SiGe:C BiCMOS technology,” www.ihp-microelectronics.com.

  7. N. Weimann, et al., “SciFab -a wafer-level heterointegrated InP DHBT/SiGe BiCMOS foundry process for mm-wave applications: SciFab -InP DHBT/SiGe BiCMOS heterointegration,” Physica status solidi (a), vol. 213, no. 4, pp. 909–916, 2016.

  8. J. Moll, et al., “Panel Design of a MIMO Imaging Radar at W-Band for Space Applications,” Proc. Eur. Microw. Conf., 2017.

  9. H. L. Van Trees, Optimum Array Processing, Part IV of Detection, Estimation, and Modulation Theory, Wiley, 2002, ISBN 978-0072881387.

  10. C. M. Schmid, et al., “Motion compensation and efficient array design for TDMA FMCW MIMO radar systems,” Proc. Eur. Conf. Antennas Propag., 2012.

  11. K. Thurn, Design- und Systemaspekte für mehrkanalige mmW-Primär-Radarsysteme zur Zielerfassung bei Raumfahrtanwendungen, Ph.D. thesis. University of Erlangen-Nuremberg, 2018.

  12. Crystek “CCSS-945” www.crystek.com.

  13. F. Herzel, et al., “Integrated frequency synthesiser in SiGe BiCMOS technology for 60 and 24 GHz wireless applications,” Electronics letters, vol. 43, no. 3, pp. 154–156, 2007.

  14. United Monolithic Semicond., “CHA2097a,” www.ums-gaas.com.

  15. M. Hrobak, et al., “Design and Fabrication of Broadband Hybrid GaAs Schottky Diode Frequency Multipliers, ”IEEE Trans. Microw. Theory Techn., vol. 61, no. 12, pp. 4442–4460, 2013.

  16. G. L. Matthaei, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Artech House, 1980, ISBN 978-0890060995.

  17. M. Hrobak, Critical mm-Wave Components for Synthetic Automatic Test Systems, Springer, 2015, ISBN 978-3-658-09763-9.

  18. L. Hayden, “An enhanced Line-Reflect-Reflect-Match calibration,” Proc. 67th ARFTG Conf., pp. 143–149, 2006.

  19. J. Vankka, et al., Direct Digital Synthesizers: Theory, Design and Applications, Kluwer Academic, 2001, ISBN 0-7923-7366-9.

  20. A. Shrestha, et al., “Design of direct digital microwave signal synthesizer using SiGe technology,” Proc. IEEE Int. Conf. on Microw., Ant., Comm. and Electr. Syst. (COMCAS), 2017.

  21. A. Shrestha, et al., “20 GHz Clock Frequency ROM-Less Direct Digital Synthesizer Comprising Unique Phase Control Unit in 0.25 μm SiGe Technology,” Proc. Eur. Microw. Conf., 2018.

  22. S. Thuries, et al., “A DDS-oriented phase-to-amplitude converter using a SiGe:C bipolar transistors differential pair,” IEEE Int. Workshop on Radio-Frequency Integr. Techn., pp. 211–214, 2005.

  23. B. S. Jensen, et al., “Twelve-bit 20-GHz reduced size pipeline accumulator in 0.25 μm SiGe:C technology for direct digital synthesiser applications,” IET Circuits, Devices & Systems, vol. 6, no. 1, pp. 19–27, 2012.

  24. J. H. Cloete, “Exact Design of the Marchand Balun,” Proc. Eur. Microw. Conf., 1979.

  25. S. Monayakul, et al., “Process Robustness and Reproducibility of sub-mm Wave Flip-Chip Interconnect Assembly,” Proc. Electr. Perf. of Electr. Pack. and Sys. Conf., 2015.

  26. N. G. Weimann, et al., “Manufacturable Low-Cost Flip-Chip Mounting Technology for 300 to 500 GHz Assemblies,” IEEE Trans. Compon. Packag. Manuf. Technol. vol. 7, no. 4, pp. 494–501, 2017.

  27. M. Hrobak, et al., “Flip-Chip Interconnects for DC to 500 GHz,” invited to workshop Connecting to MMIC at Millimeter-Waves, Proc. Eur. Microw. Conf., 2017.

  28. S. Sinha, et al., “Flip-Chip Approach for 500 GHz Broadband Interconnects,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 4, pp. 1215–1225, 2017.

  29. D. Stoppel, et al., “NiCr resistors for Terahertz applications in an InP DHBT process,” Elsevier Microelectronics Journal, vol 208, pp. 1–6, 2019.

  30. D. Stoppel, et al., “Through silicon via (TSV) process for suppression of substrate modes in a transferred-substrate InP DHBT MMIC technology,” Comp. Semic. Week, 2018.

  31. D. Stoppel, et al., “Verfahren zur Herstellung von integrierten elektronischen Schaltungen,” German patent DE102017106051A1.

  32. N. Weimann, et al., “Tight Focus Toward the Future,” IEEE Microw. Mag., vol. 18, no. 2, 2017.

  33. Tom K. Johansen, et al., “EM simulation assisted parameter extraction for the modeling of transferred-substrate InP HBTs,” Proc. Eur. Microw. Conf., pp. 240–243, 2017.

  34. G. F. Engen, et al., “Thru-Reflect-Line: An Improved Technique for Calibrating the Dual Six-Port Automatic Network Analyzer,” IEEE Trans. Microw. Theory Techn., vol. 27, no. 12, pp. 987–993, 1979.

  35. P. Song, et al., “A high gain, W-band SiGe LNA with sub-4.0 dB noise figure,” IEEE-MTT-S Int. Microw. Symp. Dig., 2014.

  36. Y. Yang, et al., “A SiGe BiCMOS W-Band LNA with 5.1 dB NF at 90 GHz,” Comp. Semic. Integ. Circ. Symp. (CSICS), 2013.

  37. W. Ciccognani, et al., “Full W-Band High-Gain LNA in mHEMT MMIC Technology,” Proc. Eur. Microw. Conf., pp. 314–317, 2008.

  38. M. L. Edwards, et al., “A New Criterion for Linear 2-Port Stability Using a Single Geometrically Derived Parameter,” IEEE Trans. Microw. Theory Techn., vol. 40, no. 12, pp. 2303–2311, 1992.

  39. M. Hossain, et al., “An Active Balanced Up-Converter Module in InP-on-BiCMOS Technology,” IEEE-MTT-S Int. Microw. Symp. Dig., 2017.

  40. M. Hossain, et al., “An Active High Conversion Gain W-Band Up-Converting Mixer for Space Applications,” IEEE-MTT-S Int. Microw. Symp. Dig., 2018.

  41. M. Hossain, et al., “A Hetero-Integrated W-Band Transmitter Module in InP-on-BiCMOS Technology,” Proc. Eur. Microw. Conf., 2018.

  42. M. Hossain, et al., “A Compact Broadband Marchand Balun for Millimeter-wave and Sub-THz Applications,” Proc. Ger. Microw. Conf., 2020.

  43. American Techn. Ceramics, “ATC 550Z,” www.atceramics.com.

  44. T. Al-Sawaf, et al., “A 200 mW InP DHBT W-band power amplifier in transferred-substrate technology with integrated diamond heat spreader,” IEEE-MTT-S Int. Microw. Symp. Dig., 2016.

  45. W. Liu, et al., “The Collapse of Current Gain in Multi-Finger Heterojunction Bipolar Transistors: Its Substrate Temperature Dependence, Instability Criteria and Modeling,” IEEE Trans. Electron Devices, vol. 41, no. 10, pp. 1698–1707, 1994.

  46. S. Maas, “Ballasting HBTs for Wireless Power Amplifier Operation,” Int. Workshop on Integr. Nonlinear Microw. and Millimeter-Wave Circ., pp. 2–5, 2006.

  47. M. Hossain, et al., “A W-Band Transceiver Chipset for Future 5G Communications in InP-DHBT Technology,” Proc. Eur. Microw. Conf., 2020.

  48. M. C. Budge Jr., et al., “Range correlation effects in radars,” IEEE Nat. Radar Conf., pp. 212–216, 1993.

  49. Coilcraft, “0302CS,” www.coilcraft.com.

  50. American Techn. Ceramics, “ATC 400Z,” www.atceramics.com.

  51. Analog Devices, “AD8369,” www.analog.com.

  52. Mini-Circuits, “BPF-E16,” ww2.minicircuits.com.

  53. Mini-Circuits, “SCLF-10.7,” ww2.minicircuits.com.

  54. D-TACQ, “ACQ480FMC,” www.d-tacq.com.

  55. Taconic, “TSM-DS3,” www.4taconic.com.

  56. Taconic, “fastriseTM27,” www.4taconic.com.

  57. I. Hertl, et al., “Different Feeding Mechanisms for Aperture Coupled Patch Arrays,” Proc. Eur. Microw. Conf., 2010.

  58. Precision Connector, “PCI-3806,” www.precisionconnector.com.

  59. M. Alibakhshikenari, et al., “Isolation enhancement of densely packed array antennas with periodic MTM-photonic bandgap for SAR and MIMO systems,” IET Microwaves, Antennas & Propagation, vol. 14, no. 3, pp. 183–188, 2020.

  60. F. Yang, et al., “Electromagnetic Band Gap Structures in Antenna Engineering,” Cambridge University Press, 2008, ISBN 9780511754531.

  61. Anritsu, “V102F-R,” www.anritsu.com.

  62. M. Morgan, et al., “A millimeter-wave perpendicular coax-to-microstrip transition,” IEEE-MTT-S Int. Microw. Symp. Dig., 2002.

  63. HRL Laboratories, “BAL-WPA,” www.hrl.com.

  64. Northrop Grumman, “ALP283,” www.northropgrumman.com.

  65. Epoxy Technology, “EPO-TEK H20E,” www.epotek.com.

  66. F. X. Roehrl, et al., “Cost-effective SIW band-pass filters for millimeter wave applications a method to combine low tolerances and low prices on standard pcb substrates,” Proc. Eur. Microw. Conf., 2017.

  67. D. Zankl, et al., “BLASTDAR—A Large Radar Sensor Array System for Blast Furnace Burden Surface Imaging,” IEEE Sensors Journal, vol. 15, no. 10, pp. 5893–5909, 2015.

  68. L. Maurer, et al., “77 GHz SiGe based bipolar transceivers for automotive radar applications —- An industrial perspective,” Proc. IEEE 9th Int. New Circuits Syst. Conf., pp. 257–260, 2011.

  69. S. S. Ahmed, et al., “A Novel Fully Electronic Active Real-Time Imager Based on a Planar Multistatic Sparse Array,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 12, pp. 3567–3576, 2011.

  70. M. Tiebout, et al., “Low power wideband receiver and transmitter chipset for mm-wave imaging in SiGe bipolar technology,” RFIC Symp., pp. 1–4, 2011.

  71. M. Rösch, et al., “Compact W-band receiver module on hybrid liquid crystal polymer board,” Proc. Eur. Radar Conf., pp. 1517–1520, 2016.

  72. A. J. Kirschner, et al., “A millimetre-wave MIMO radar system for threat detection in patrol or checkpoint scenarios,” IET Int. Conf. on Radar Systems, 2012.

Download references

Funding

This work was supported by the Federal Ministry for Economic Affairs and Energy under project MIMIRAWE (grant number: 50RA1326–29).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hrobak.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hrobak, M., Thurn, K., Moll, J. et al. A Modular MIMO Millimeter-Wave Imaging Radar System for Space Applications and Its Components. J Infrared Milli Terahz Waves 42, 275–324 (2021). https://doi.org/10.1007/s10762-020-00736-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-020-00736-9

Keywords

Navigation