Skip to main content
Log in

Identification of jamming transition: a critical appraisal

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

A variety of approaches have been proposed to determine the onset of jamming (unjamming) transition for granular medium. However, these approaches all have their own limitations. In this study, the applicability of the existing approaches in identifying the jamming (unjamming) transition instant is evaluated based on the discrete element method simulations on both frictionless and frictional specimens subjected to different loading protocols which lead to isotropic jamming, shear jamming and shear unjamming. A new approach based on Hill’s criterion of failure is proposed, which defines the transition of second order work from positive to negative as the onset of jamming (unjamming) transition. The jamming (unjamming) transition instant determined from the new approach is compared with those determined from some classic approaches. It is found that the second order work-based approach not only locates the critical solid fraction in the jamming diagram consistent with other approaches, but is also able to identify the onset of jamming (unjamming) transition for loading protocols that are difficult to be assessed by the existing approaches. This more robust approach is useful for the study of jamming phenomena under a broader types of loading protocols, and can be further employed to derive the jamming diagram of real materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Availability of data and material (data transparency)

Available subject to request.

Code availability (software application or custom code)

Not applicable.

References

  1. Bi, D., Zhang, J., Chakraborty, B., Behringer, R.P.: Jamming by shear. Nature 480, 355–358 (2011). https://doi.org/10.1038/nature10667

    Article  ADS  Google Scholar 

  2. Liu, A.J., Nagel, S.R.: Jamming is not just cool any more. Nature 396(6706), 21–22 (1998). https://doi.org/10.1038/23819

    Article  ADS  Google Scholar 

  3. Ciamarra, M.P., Pastore, R., Nicodemi, M., Coniglio, A.: Jamming phase diagram for frictional particles. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. (2011). https://doi.org/10.1103/PhysRevE.84.041308

    Article  Google Scholar 

  4. Göncü, F., Durán, O., Luding, S.: Jamming in frictionless packings of spheres: determination of the critical volume fraction. AIP Conf. Proc. 1145, 531–534 (2009). https://doi.org/10.1063/1.3179980

    Article  ADS  Google Scholar 

  5. Van Hecke, M.: Jamming of soft particles: geometry, mechanics, scaling and isostaticity. J. Phys. Condens. Matter (2010). https://doi.org/10.1088/0953-8984/22/3/033101

    Article  Google Scholar 

  6. Wang, D., Ren, J., Dijksman, J.A., Zheng, H., Behringer, R.P.: Microscopic origins of shear jamming for 2D frictional grains. Phys. Rev. Lett. 120, 208004 (2018). https://doi.org/10.1103/PhysRevLett.120.208004

    Article  ADS  Google Scholar 

  7. Huang, X., Hanley, K.J., Zhang, Z., Kwok, C.Y.: Structural degradation of sands during cyclic liquefaction: Insight from DEM simulations. Comput. Geotech. 114, 103139 (2019). https://doi.org/10.1016/j.compgeo.2019.103139

    Article  Google Scholar 

  8. Shundyak, K., Van Hecke, M., Van Saarloos, W.: Force mobilization and generalized isostaticity in jammed packings of frictional grains. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 75, 1–4 (2007). https://doi.org/10.1103/PhysRevE.75.010301

    Article  Google Scholar 

  9. Imole, O.I., Kumar, N., Magnanimo, V., Luding, S.: Hydrostatic and shear behavior of frictionless granular assemblies under different deformation conditions. KONA Powder Part. J. 30, 84–108 (2012). https://doi.org/10.14356/kona.2013011

    Article  Google Scholar 

  10. Thornton, C.: Numerical simulations of deviatoric shear deformation of granular media. Geotechnique 50, 43–53 (2000)

    Article  Google Scholar 

  11. Kumar, N., Luding, S.: Memory of jamming–multiscale models for soft and granular matter. Granul. Matter 18, 1–21 (2016). https://doi.org/10.1007/s10035-016-0624-2

    Article  ADS  Google Scholar 

  12. Zhang, H.P., Makse, H.A.: Jamming transition in emulsions and granular materials. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 72, 1–12 (2005). https://doi.org/10.1103/PhysRevE.72.011301

    Article  Google Scholar 

  13. Vinutha, H.A., Sastry, S.: Disentangling the role of structure and friction in shear jamming. Nat. Phys. 12, 578–583 (2016). https://doi.org/10.1038/nphys3658

    Article  Google Scholar 

  14. Song, C., Wang, P., Makse, H.A.: A phase diagram for jammed matter. Nature 453, 629–632 (2008). https://doi.org/10.1038/nature06981

    Article  ADS  Google Scholar 

  15. O’Hern, C.S., Langer, S.A., Liu, A.J., Nagel, S.R.: Force distributions near jamming and glass transitions. Phys. Rev. Lett. 86, 111–114 (2001). https://doi.org/10.1103/PhysRevLett.86.111

    Article  ADS  Google Scholar 

  16. Xu, N., O’Hern, C.S.: Measurements of the yield stress in frictionless granular systems. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 73, 1–7 (2006). https://doi.org/10.1103/PhysRevE.73.061303

    Article  Google Scholar 

  17. Rodney, D., Schuh, C.A.: Yield stress in metallic glasses: the jamming-unjamming transition studied through Monte Carlo simulations based on the activation-relaxation technique. Phys. Rev. B Condens. Matter Mater. Phys. (2009). https://doi.org/10.1103/PhysRevB.80.184203

    Article  Google Scholar 

  18. Urbani, P., Zamponi, F.: Shear yielding and shear jamming of dense hard sphere glasses. Phys. Rev. Lett. 118, 1–5 (2017). https://doi.org/10.1103/PhysRevLett.118.038001

    Article  Google Scholar 

  19. Cunningham, N.: What is Yield Stress and why does it matter? (2016). https://www.pcimag.com/ext/resources/WhitePapers/YieldStressWhitePaper.pdf

  20. Heussinger, C., Barrat, J.L.: Jamming transition as probed by quasistatic shear flow. Phys. Rev. Lett. 102, 1–4 (2009). https://doi.org/10.1103/PhysRevLett.102.218303

    Article  Google Scholar 

  21. Otsuki, M., Hayakawa, H.: Critical scaling near jamming transition for frictional granular particles. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 83, 5–10 (2011). https://doi.org/10.1103/PhysRevE.83.051301

    Article  Google Scholar 

  22. Göncü, F., Durán, O., Luding, S.: Constitutive relations for the isotropic deformation of frictionless packings of polydisperse spheres. C. R. Méc. 338, 570–586 (2010). https://doi.org/10.1016/j.crme.2010.10.004

    Article  ADS  MATH  Google Scholar 

  23. Luding, S.: About contact force-laws for cohesive frictional materials in 2d and 3d. In: Walzel, P., Linz, S., Krülle, C., Grochowski, R. (eds.) Behavior of Granular Media, Shaker Verlag, pp 137–147, band 9, Schriftenreihe Mechanische Verfahrenstechnik, ISBN 3-8322-5524-9 (2006)

  24. Hidalgo, R.C., Grosse, C.U., Kun, F., Reinhardt, H.W., Herrmann, H.J.: Evolution of percolating force chains in compressed granular media. Phys. Rev. Lett. 89, 1–5 (2002). https://doi.org/10.1103/PhysRevLett.89.205501

    Article  Google Scholar 

  25. Smith, K.C., Fisher, T.S., Alam, M.: Isostaticity of constraints in amorphous jammed systems of soft frictionless Platonic solids. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 84, 1 (2011). https://doi.org/10.1103/PhysRevE.84.030301

    Article  Google Scholar 

  26. Geng, J., Behringer, R.P.: Slow drag in two-dimensional granular media. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 71, 1–19 (2005). https://doi.org/10.1103/PhysRevE.71.011302

    Article  Google Scholar 

  27. Olson Reichhardt, C.J., Reichhardt, C.: Fluctuations, jamming, and yielding for a driven probe particle in disordered disk assemblies. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 82, 1–11 (2010). https://doi.org/10.1103/PhysRevE.82.051306

    Article  Google Scholar 

  28. Candelier, R., Dauchot, O.: Journey of an intruder through the fluidization and jamming transitions of a dense granular media. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 81, 1–12 (2010). https://doi.org/10.1103/PhysRevE.81.011304

    Article  Google Scholar 

  29. Reichhardt, C., Reichhardt, C.J.O.: Aspects of jamming in two-dimensional athermal frictionless systems. Soft Matter 10, 2932–2944 (2014). https://doi.org/10.1039/c3sm53154f

    Article  ADS  Google Scholar 

  30. Lopera Perez, J.C., Kwok, C.Y., O’Sullivan, C., Huang, X., Hanley, K.J.: Exploring the micro-mechanics of triaxial instability in granular materials. Geotechnique 66, 725–740 (2016). https://doi.org/10.1680/jgeot.15.P.206

    Article  Google Scholar 

  31. Sawicki, A., Świdziński Waldemar, W.: Modelling the pre-failure instabilities of sand. Comput. Geotech. 37, 781–788 (2010). https://doi.org/10.1016/j.compgeo.2010.06.004

    Article  Google Scholar 

  32. Nicot F., Hadda N., Bourrier F., Sibille L., Tordesillas A., Darve F.: Micromechanical analysis of second order work in granular media. In: Chau K.T., Zhao J. (eds.) Bifurcation and Degradation of Geomaterials in the New Millennium. IWBDG 2014. Springer Series in Geomechanics and Geoengineering. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-13506-9_11

  33. Darve, F., Servant, G., Laouafa, F., Khoa, H.D.V.: Failure in geomaterials: continuous and discrete analyses. Comput. Methods Appl. Mech. Eng. 193, 3057–3085 (2004). https://doi.org/10.1016/j.cma.2003.11.011

    Article  ADS  MATH  Google Scholar 

  34. Nicot, F., Sibille, L., Darve, F.: Failure in rate-independent granular materials as a bifurcation toward a dynamic regime. Int. J. Plast. 29, 136–154 (2012). https://doi.org/10.1016/j.ijplas.2011.08.002

    Article  Google Scholar 

  35. Nicot, F., Daouadji, A., Laouafa, F., Darve, F.: Second-order work, kinetic energy and diffuse failure in granular materials. Granul. Matter 13, 19–28 (2011). https://doi.org/10.1007/s10035-010-0219-2

    Article  Google Scholar 

  36. Hadda, N., Nicot, F., Bourrier, F., Sibille, L., Radjai, F., Darve, F.: Micromechanical analysis of second order work in granular media. Granul. Matter 15, 221–235 (2013). https://doi.org/10.1007/s10035-013-0402-3

    Article  Google Scholar 

  37. Nicot, F., Darve, F.: A micro-mechanical investigation of bifurcation in granular materials. Int. J. Solids Struct. 44, 6630–6652 (2007). https://doi.org/10.1016/j.ijsolstr.2007.03.002

    Article  MATH  Google Scholar 

  38. Nova, R.: Controllability of the incremental response of soil specimens subjected to arbitrary loading programmes. J. Mech. Behav. Mater. 5, 193–202 (1994)

    Article  Google Scholar 

  39. Buscarnera, G., Dattola, G., Di Prisco, C.: Controllability, uniqueness and existence of the incremental response: a mathematical criterion for elastoplastic constitutive laws. Int. J. Solids Struct. 48, 1867–1878 (2011). https://doi.org/10.1016/j.ijsolstr.2011.02.016

    Article  Google Scholar 

  40. Yimsiri, S., Soga, K.: DEM analysis of soil fabric effects on behaviour of sand. Géotechnique 60(6), 483–495 (2010). https://doi.org/10.1680/geot.2010.60.6.483

    Article  Google Scholar 

  41. Huang, X., Hanley, K.J., Zhang, Z., Kwok, C., Xu, M.: Jamming analysis on the behaviours of liquefied sand and virgin sand subject to monotonic undrained shearing. Comput. Geotech. 111, 1 (2019). https://doi.org/10.1016/j.compgeo.2019.03.008

    Article  ADS  Google Scholar 

  42. Huang, X., Kwok, C.Y., Hanley, K.J., Zhang, Z.: DEM analysis of the onset of flow deformation of sands: linking monotonic and cyclic undrained behaviours. Acta Geotech. 13, 1061–1074 (2018). https://doi.org/10.1007/s11440-018-0664-3

    Article  Google Scholar 

  43. Liu, A.J., Nagel, S.R.: The Jamming Transition and the Marginally Jammed Solid. Annu. Rev. Condens. Matter Phys. 1, 347–369 (2010). https://doi.org/10.1146/annurev-conmatphys-070909-104045

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research was supported by the National Natural Science Foundation of China (Nos. 41877227 and 51509186).

Author information

Authors and Affiliations

Authors

Contributions

Mingze Xu: Analysis, figures and first draft writing; Zixin Zhang: research overseeing. Xin Huang: Conceptual and final editing.

Corresponding author

Correspondence to Xin Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection: Flow regimes and phase transitions in granular matter: multiscale modeling from micromechanics to continuum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Zhang, Z. & Huang, X. Identification of jamming transition: a critical appraisal. Granular Matter 23, 5 (2021). https://doi.org/10.1007/s10035-020-01066-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-020-01066-2

Keywords

Navigation