Skip to main content
Log in

Characterization and modeling of granular jamming: models for mechanical design

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The use of granular jamming is proposed for designing structures with tunable rigidity of their tools (with the ability of being flexible devices for shaping and deformation but rigid for shape-locking and force transmission). The granular jamming consists in modifying the apparent rigidity of a structure by controlling the vacuum in a membrane filled with granular material. When the difference of pressure is low, the grains are free to move with respect to each other and the structure is flexible. When the vacuum in the membrane is increased, the grains are blocked and the structure is more rigid. Different mechanical characterizations of the granular jamming have been performed (triaxial compression and tension and cantilever beam bending tests) for different glass bead sizes ranging between 100 \({\upmu }{\hbox {m}}\) and 1 \(\hbox {mm}\) (used as granular material) at different vacuum levels (between 0 \(\hbox {kPa}\) and 90 \(\hbox {kPa}\)). The grain size slightly influences the stiffness while the pressure difference is the main parameter to tune the stiffness of the structure. Based on these experiments, analytical models have been developed and validated. The tension characteristics can be directly deduced from the compression behavior and the bending modulus can be obtained by a combination of the tension and compression moduli. The proposed analytical models present the advantage of a simple formulation and are suitable for estimating the performance of other structures based on the granular jamming. The models can estimate and predict satisfactorily the results of granular jamming and can be used for designing mechanical structures based on this mechanism.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and material

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Loeve, A., Breedveld, P., Dankelman, J.: Scopes too flexible... and too stiff. IEEE Pulse 1(3), 26 (2010)

    Article  Google Scholar 

  2. Blanc, L., Delchambre, A., Lambert, P.: Flexible medical devices: review of controllable stiffness solutions. In: Actuators, vol. 6, p. 23. Multidisciplinary Digital Publishing Institute (2017)

  3. Cianchetti, M., Laschi, C., Menciassi, A., Dario, P.: Biomedical applications of soft robotics. Nat. Rev. Mater. 3, 1 (2018)

    Article  Google Scholar 

  4. Kuder, I.K., Arrieta, A.F., Raither, W.E., Ermanni, P.: Variable stiffness material and structural concepts for morphing applications. Prog. Aerosp. Sci. 63, 33 (2013)

    Article  Google Scholar 

  5. Brigido-González, J.D., Burrow, S.G., Woods, B.K.: Switchable stiffness morphing aerostructures based on granular jamming. J. Intell. Mater. Syst. Struct. 30(17), 2581 (2019)

    Article  Google Scholar 

  6. Bajkowski, J.M., Dyniewicz, B., Bajer, C.I.: Damping properties of a beam with vacuum-packed granular damper. J. Sound Vib. 341, 74 (2015)

    Article  ADS  Google Scholar 

  7. Cheng, N.G., Lobovsky, M.B., Keating, S.J., Setapen, A.M., Gero, K.I., Hosoi, A.E., Iagnemma, K.D.: Design and analysis of a robust, low-cost, highly articulated manipulator enabled by jamming of granular media, In: IEEE International Conference on Robotics and Automation (ICRA) (IEEE), pp. 4328–4333 (2012)

  8. Mustaza, S.M., Mahdi, D., Saaj, C., Albukhanajer, W.A., Lekakou, C., Elsayed, Y., Fras, J.: Tuneable stiffness design of soft continuum manipulator. In: International Conference on Intelligent Robotics and Applications, pp. 152–163. Springer, New York (2015)

  9. Langer, M., Amanov, E., Burgner-Kahrs, J.: Stiffening sheaths for continuum robots. Soft Robot. 5(3), 291 (2018)

    Article  Google Scholar 

  10. Manti, M., Cacucciolo, V., Cianchetti, M.: Stiffening in soft robotics: a review of the state of the art. IEEE Robot. Autom. Mag. 23(3), 93 (2016)

    Article  Google Scholar 

  11. Jaeger, H.M.: Celebrating soft matter’s 10th anniversary: toward jamming by design. Soft Matter 11(1), 12 (2015)

    Article  ADS  Google Scholar 

  12. Brown, E., Rodenberg, N., Amend, J., Mozeika, A., Steltz, E., Zakin, M.R., Lipson, H., Jaeger, H.M.: Universal robotic gripper based on the jamming of granular material. Proc. Natl. Acad. Sci. 107(44), 18809 (2010)

    Article  ADS  Google Scholar 

  13. Amend, J.R., Brown, E., Rodenberg, N., Jaeger, H.M., Lipson, H.: A positive pressure universal gripper based on the jamming of granular material. IEEE Trans. Robot. 28(2), 341 (2012)

    Article  Google Scholar 

  14. Amend, J., Cheng, N., Fakhouri, S., Culley, B.: Soft robotics commercialization: jamming grippers from research to product. Soft Robot. 3(4), 213 (2016)

    Article  Google Scholar 

  15. Wei, Y., Chen, Y., Ren, T., Chen, Q., Yan, C., Yang, Y., Li, Y., Novel, A.: Variable stiffness robotic gripper based on integrated soft actuating and particle jamming. Soft Robot. 3(3), 134 (2016)

    Article  Google Scholar 

  16. De Falco, I., Cianchetti, M., Menciassi, A.: STIFF-FLOP surgical manipulator: design and preliminary motion evaluation. In: Proceedings of 4th WorkShop on Computer/Robot Assisted Surgery (CRAS), pp. 131–134 (2014)

  17. Loeve, A.J., van de Ven, O.S., Vogel, J.G., Breedveld, P., Dankelman, J.: Vacuum packed particles as flexible endoscope guides with controllable rigidity. Granul. Matter 12(6), 543 (2010)

    Article  Google Scholar 

  18. Cianchetti, M., Ranzani, T., Gerboni, G., De Falco, I., Laschi, C., Menciassi, A.: STIFF-FLOP Surgical manipulator: mechanical design and experimental characterization of the single module. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE), pp. 3576–3581 (2013)

  19. Jiang, A., Adejokun S., Faragasso, A., Althoefer, K., Nanayakkara, T., Dasgupta, P.: The granular jamming integrated actuator. In: IEEE International Conference on Advanced Robotics and Intelligent Systems (ARIS) (IEEE), pp. 12–17 (2014)

  20. Athanassiadis, A.G., Miskin, M.Z., Kaplan, P., Rodenberg, N., Lee, S.H., Merritt, J., Brown, E., Amend, J., Lipson, H., Jaeger, H.M.: Particle shape effects on the stress response of granular packings. Soft Matter 10(1), 48 (2014)

    Article  ADS  Google Scholar 

  21. Bardet, J.P.: Experimental Soil Mechanics, Experimental Soil Mechanics. Prentice Hall, New Jersey (1997)

    Google Scholar 

  22. Huijben, F.A.A.: Vacuumatics: 3D formwork systems. Ph.D. thesis, University of Eindhoven (2014)

  23. Blanc, L., Pol, A., François, B., Delchambre, A., Lambert, P., Gabrieli, F.: Granular jamming as controllable stiffness mechanism for medical devices. In: Micro to MACRO Mathematical Modelling in Soil Mechanics, pp. 57–66. Springer, New York (2018)

  24. Güneyli, H., Rüşen, T.: Effect of length-to-diameter ratio on the unconfined compressive strength of cohesive soil specimens. Bull. Eng. Geol. Environ. 75(2), 793 (2016)

    Article  Google Scholar 

  25. Nova, R., Wood, D.M.: A constitutive model for sand in triaxial compression. Int. J. Numer. Anal. Methods Geomech. 3(3), 255 (1979)

    Article  Google Scholar 

  26. Hicher, P.Y.: Elastic properties of soils. J. Geotech. Eng. 122(8), 641 (1996)

    Article  Google Scholar 

  27. Nova, R., et al.: Nova, roberto and others. In: Soil Mechanics (Wiley Online Library), chap. 5, pp. 125–239 (2010)

  28. Yanagida, T., Adachi, K., Nakamura, T.: Development of endoscopic device to veer out a latex tube with jamming by granular materials. In: Proceedings of the 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO) (IEEE), pp. 1474–1479 (2013)

  29. Huijben, F., Herwijnen, F.V., Nijsse, V.R.: Acuumatics; systematic flexural rigidity analysis. In: Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium , pp. 8–12 (2010)

  30. Jiang, A., Ranzani, T., Gerboni, G., Lekstutyte, L., Althoefer, K., Dasgupta, P., Nanayakkara, T.: Robotic granular jamming: does the membrane matter? Soft Robot. 1(3), 192 (2014)

    Article  Google Scholar 

  31. Cheng, N.G.: Design and analysis of jammable granular systems. Ph.D. thesis, Massachusetts Institute of Technology (2013)

  32. Corfdir, A., Sulem, J.: Comparison of extension and compression triaxial tests for dense sand and sandstone. Acta Geotech. 3(3), 241 (2008)

    Article  Google Scholar 

  33. Jones, R.M.: Stress-strain relations for materials with different moduli in tension and compression. AIAA J. 15(1), 16 (1977)

    Article  ADS  Google Scholar 

  34. Frey, F.: Analyse des structures et milieux continus: mécanique des structures. PPUR presses polytechniques (2014)

  35. Kang, D., Standley, A., Chang, J.H.C., Liu, Y., Tai, Y.C.: Effects of deposition temperature on Parylene-C properties. In: Proceedings of the 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE), pp. 389–390 (2013)

Download references

Acknowledgements

This work was supported by the Fonds de la Recherche Scientifique (FRS-FNRS) through an F.R.I.A. (Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture) grant, a C.D.R (Crédit de Recherche) J.0098.19 and a Research Project P.D.R. (Projet de Recherche) T1002.14. L. Blanc would like to thank the Fonds David et Alice Van Buuren and the Fondation Jaumotte-Demoulin.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Loïc Blanc, with the help and under the supervision of Bertrand François, Alain Delchambre and Pierre Lambert. The first draft of the manuscript was written by Loïc Blanc and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Loïc Blanc.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanc, L., François, B., Delchambre, A. et al. Characterization and modeling of granular jamming: models for mechanical design. Granular Matter 23, 6 (2021). https://doi.org/10.1007/s10035-020-01071-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-020-01071-5

Keywords

Navigation