Skip to main content
Log in

Binary Solvent Effects on Thermally Crosslinked Small Molecular Thin Films for Solution Processed Organic Light-Emitting Diodes

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

This article has been updated

Abstract

Solution processing of crosslinkable small molecular thin films is potentially attractive for the fabrication of large-area display panels based on organic light-emitting diodes (OLEDs). The characteristics of a wet-processed film made of a thermally crosslinked small-molecular material can be controlled by simply adding a cosolvent to its solution. The surface morphology of a nanometer-scale thin film made of N4,N4′-di(naphthalen-1-yl)-N4,N4′-bis(4-vinylphenyl)biphenyl-4,4′-diamine (VNPB), dissolved in chlorobenzene, improved dramatically after the addition of 20% cyclohexanone. At the same time, better resistance of the crosslinked layer to a number of solvents frequently used in the fabrication of the adjacent emitting layer was achieved. Moreover, the maximum current efficiency in the binary solvent device increased significantly to 22.2 Cd/A, compared to 9.7 Cd/A in the reference device without VNPB, and the device lifetime was extended by up to 74.8%. This illustrates a simple and additive-free strategy to prevent the formation of defects in solution processed thin-film stacks made of small-molecular materials. The insights gained will be helpful in the solution-based manufacture of large-area OLEDs and other optoelectronic components.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 18 December 2020

    The size of the Graphical Abstract is reduced

References

  1. Gustafsson, G., Cao, Y., Treacy, G.M., Klavetter, F., Colaneri, N., Heeger, A.J.: Flexible light-emitting diodes made from soluble conducting polymers. Nature 357, 477–479 (1992)

    CAS  Google Scholar 

  2. Duan, L., Hou, L., Lee, T.-W., Qiao, J., Zhang, D., Dong, G., Wang, L., Qui, Y.: Solution processable small molecules for organic light-emitting diodes. J. Mater. Chem. 20, 6392–6407 (2010)

    CAS  Google Scholar 

  3. Aizawa, N., Pu, Y.-J., Watanabe, M., Chiba, T., Ideta, K., Toyota, N., Igarashi, M., Suzuri, Y., Sasabe, H., Kido, J.: Solution-processed multilayer small-molecule light-emitting devices with high-efficiency white-light emission. Nature Commun. 5, 5756–5762 (2014)

    Google Scholar 

  4. Dai, X., Zhang, Z., Jin, Y., Niu, Y., Cao, H., Liang, X., Chen, L., Wang, J., Peng, X.: Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014)

    CAS  Google Scholar 

  5. Nuyken, O., Bacher, E., Braig, T., Faber, R., Mielke, F., Rojahn, M., Wiederhirn, V., Meerholz, K., Mueller, D.: Crosslinkable hole- and electron-transport materials for application in organic light emitting devices (OLEDs). Des. Monomers Polym. 5(2), 195–210 (2002)

    CAS  Google Scholar 

  6. Nuyken, O., Jungermann, S., Wiederhirn, V., Bacher, E., Meerholz, K.: Monatshefte Für Chem. Chem. Mon. 137, 811 (2006)

    CAS  Google Scholar 

  7. Zuniga, C., Barlow, S., Marder, S.R.: Approaches to solution-processed multilayer organic light-emitting diodes based on cross-linking. Chem. Mater. 23, 658–681 (2011)

    CAS  Google Scholar 

  8. Cha, S.J., Cho, S., Lee, W., Chung, H., Kang, I., Suh, M.C.: Approaches to solution-processed multilayer organic light-emitting diodes based on cross-linking. Macromol. Rapid Commun. 35, 807–812 (2014)

    CAS  Google Scholar 

  9. Niu, Y.-H., Liu, M.S., Ka, J.-W., Bardeker, J., Zin, M.T., Schofield, R., Chi, Y., Jen, A.K.-Y.: Crosslinkable hole-transport layer on conducting polymer for high‐efficiency white polymer light‐emitting diodes. Adv. Mater. 19(2), 300–304 (2007)

    CAS  Google Scholar 

  10. Niu, Y.-H., Munro, A.M., Cheng, Y.-J., Tian, Y., Zhao, J., Bardecker, J.A., Plante, J.-L., Ginger, D.S., Jen, A.K.-Y.: Improved performance from multilayer quantum dot light-emitting diodes via thermal annealing of the quantum dot layer. Adv. Mater. 19(20), 3371–3376 (2007)

    CAS  Google Scholar 

  11. Cheng, Y.-J., Liu, M.S., Zhang, Y., Niu, Y., Huang, F., Ka, J.-W., Yip, H.-L., Tian, Y., Jen, A.K.-Y.: Thermally cross-linkable hole-transporting materials on conducting polymer: synthesis, characterization, and applications for polymer light-emitting devices. Chem. Mater. 20, 413–422 (2008)

    CAS  Google Scholar 

  12. Huang, F., Cheng, Y.-J., Zhang, Y., Liu, M.S., Jen, A.K.-Y.: Crosslinkable hole-transporting materials for solution processed polymer light-emitting diodes. J. Mater. Chem. 18, 4495–4509 (2008)

    CAS  Google Scholar 

  13. Liu, M.S., Niu, Y.-H., Ka, J.-W., Yip, H.-L., Huang, F., Luo, J., Kim, T.-D., Jen, A.K.-Y.: Thermally cross-linkable hole-transporting materials for improving hole injection in multilayer blue-emitting phosphorescent polymer light-emitting diodes. Macromolecules 41(24), 9570–9580 (2008)

    CAS  Google Scholar 

  14. Jiang, W., Ban, X., Ye, M., Sun, Y., Duan, L., Qiu, Y.: A high triplet energy small molecule based thermally cross-linkable hole-transporting material for solution-processed multilayer blue electrophosphorescent devices. J. Mater. Chem. C 3, 243–246 (2015)

    CAS  Google Scholar 

  15. Ho, S., Liu, S., Chen, Y., So, F.: Review of recent progress in multilayer solution-processed organic light-emitting diodes. J. Photon. Energy 5(1), 057611 (2015)

    Google Scholar 

  16. Kim, B.S., Kim, O., Chin, B.D., Lee, C.W.: Thermally cross-linkable hole transport materials for solution processed phosphorescent OLEDs. J. Kor. Phys. Soc. 72(8), 930–938 (2018)

    CAS  Google Scholar 

  17. Tang, C.W., VanSlyke, S.A.: Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913 (1987)

    CAS  Google Scholar 

  18. O’Brien, D.F., Burrows, P.E., Forrest, S.R., Koene, B.E., Loy, D.E., Thompson, M.E.: Hole Transporting materials with high glass transition temperatures for use in organic light-emitting devices. Adv. Mater. 10, 1108 (1998)

    Google Scholar 

  19. Lin, C.-Y., Lin, Y.-C., Hung, W.-Y., Wong, K.-T., Kwong, R.C., Xia, S.C., Chen, Y.-H., Wu, C.-I.: A thermally cured 9,9-diarylfluorene-based triaryldiamine polymer displaying high hole mobility and remarkable ambient stability. J. Mater. Chem. 19, 3618–3623 (2009)

    CAS  Google Scholar 

  20. Hayashi, N., Nishio, R., Takada, S.: Composition, film using the composition, charge transport layer, organic electroluminescence device, and method for forming charge transport layer. Patent, US9005775B2 (2015)

  21. Xiang, C., Chopra, N., Wang, J., Brown, C., Ho, S., Mathai, M., So, F.: Phosphorescent organic light emitting diodes with a cross-linkable hole transporting material. Org. Electron. 15, 1702–1706 (2014)

    CAS  Google Scholar 

  22. Lin, H.-W., Lin, W.-C., Chang, J.-H., Wu, C.-I.: Solution-processed hexaazatriphenylene hexacarbonitrile as a universal hole-injection layer for organic light-emitting diodes. Org. Electron. 14, 1204–1210 (2013)

    CAS  Google Scholar 

  23. Xu, J., Voznyy, O., Comin, R., Gong, X., Walters, G., Liu, M., Kanjanaboos, P., Lan, X., Sargent, E.H.: Crosslinked remote-doped hole-extracting contacts enhance stability under accelerated lifetime testing in perovskite solar cells. Adv. Mater. 28, 2807–2815 (2016)

    CAS  Google Scholar 

  24. Cho, W., Reddy, S.S., Kim, J., Cho, Y.-R., Jin, S.-H.: All solution-processed red organic light-emitting diode based on a new thermally cross-linked heteroleptic Ir(III) complex. J. Mater. Chem. C 6, 11714–11721 (2018)

    CAS  Google Scholar 

  25. Yook, K.S., Lee, J.Y.: Small molecule host materials for solution processed phosphorescent organic light-emitting diodes. Adv. Mater. 26, 4218–4233 (2014)

    CAS  Google Scholar 

  26. Oostra, A.J., Blom, P.W.M., Michels, J.J.: Prevention of short circuits in solution-processed OLED devices. Org. Electron. 15, 1166–1172 (2014)

    Google Scholar 

  27. Lee, J., Kim, G., Shin, D.-K., Seo, Y., Kim, K., Park, J.: Improved surface morphology of crosslinked hole transport films by a mixture of polymer for OLEDs. IEEE Trans. Electron Devices 65(8), 3311–3317 (2018)

    CAS  Google Scholar 

  28. Park, S.-R., Kang, J.-H., Ahn, D.A., Suh, M.C.: A cross-linkable hole transport material having improved mobility through a semiinterpenetrating polymer network approach for solution-processed green PHOLEDs. J. Mater. Chem. C 6(29), 7750–7758 (2018)

    CAS  Google Scholar 

  29. Seo, M., Park, Y.: An organic light emitting device comprising a hole transfer layer comprising an complex and method for preparing the same. Patent, KR101973287B1 (2019)

  30. Liu, L., Liu, X., Zhang, B., Ding, J., Xie, Z., Wang, L.: A binary solvent mixture-induced aggregation of a carbazole dendrimer host toward enhancing the performance of solution-processed blue electrophosphorescent devices. J. Mater. Chem. C 3, 5050–5055 (2015)

    CAS  Google Scholar 

  31. Liu, H., Xu, W., Tan, W., Zhu, X., Wang, J., Peng, J., Cao, Y.: Line printing solution-processable small molecules with uniform surface profile via ink-jet printer. J. Colloid Interface Sci. 465, 106–111 (2016)

    CAS  Google Scholar 

  32. Lin, T., Sun, X., Hu, Y., Mu, W., Sun, Y., Zhang, D., Su, Z., Chu, B., Cui, Z.: Blended host ink for solution processing high performance phosphorescent OLEDs. Sci. Reports 9(1), 6845 (2019)

    Google Scholar 

  33. Bail, R., Hong, J.Y., Chin, B.D.: Inkjet printing of blue phosphorescent light-emitting layer based on bis(3,5-di(9H-carbazol-9-yl))diphenylsilane. RSC Adv. 8, 11191–11119 (2018)

    CAS  Google Scholar 

  34. Kang, Y.J., Bail, R., Lee, C.W., Chin, B.D.: Inkjet printing of mixed-host emitting layer for electrophosphorescent organic light-emitting diodes. ACS Appl. Mater. Interfaces 11, 21784–21794 (2019)

    CAS  Google Scholar 

  35. Du, B.-S., Liao, J.-L., Huang, M.-H., Lin, C.-H., Lin, H.-W., Chi, Y., Pan, H.-A., Fan, G.-L., Wong, K.-T., Lee, G.-H., Chou, P.-T.: Os(II) based green to red phosphors: a great prospect for solution-processed, highly efficient organic light-emitting diodes. Adv. Funct. Mater. 22, 3491–3499 (2012)

    CAS  Google Scholar 

  36. de Jong, M.P., van Ijzendoorn, L.J., de Voigt, M.J.A.: Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes. Appl. Phys. Lett. 77, 2255 (2000)

    Google Scholar 

  37. Reiter, G.: Dewetting of thin polymer films. Phys. Rev. Lett. 68, 75 (1992)

    CAS  Google Scholar 

  38. Jacobs, K., Herminghaus, S., Mecke, K.R.: Thin liquid polymer films rupture via defects. Langmuir 14, 965–969 (1998)

    CAS  Google Scholar 

  39. Sharma, A., Reiter, G.: Instability of thin polymer films on coated substrates: rupture, dewetting, and drop formation. J. Colloid Interface Sci. 178, 383–399 (1996)

    CAS  Google Scholar 

  40. Sharma, A., Ruckenstein, E.: Dewetting of solids by the formation of holes in macroscopic liquid films. J. Colloid Interface Sci. 133(2), 358–368 (1989)

    CAS  Google Scholar 

  41. Shirota, Y.: Photo- and electroactive amorphous molecular materials—molecular design, syntheses, reactions, properties, and applications. J. Mater. Chem. 15, 75–93 (2005)

    CAS  Google Scholar 

  42. Liu, X.-M., He, C., Huang, J., Xu, J.: Highly efficient blue-light-emitting glass-forming molecules based on tetraarylmethane/silane and fluorene: synthesis and thermal, optical, and electrochemical properties. Chem. Mater. 17(2), 434–441 (2005)

    CAS  Google Scholar 

  43. Chang, J.-F., Sun, B., Breiby, D.W., Nielsen, M.M., Sölling, T.I., Giles, M., McCulloch, I., Sirringhaus, H.: Enhanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents. Chem. Mater. 16, 4772–4776 (2004)

    CAS  Google Scholar 

  44. Kim, C.S., Lee, S., Gomez, E.D., Anthony, J.E., Loo, Y.-L.: Solvent-dependent electrical characteristics and stability of organic thin-film transistors with drop cast bis(triisopropylsilylethynyl) pentacene. Appl. Phys. Lett. 93, 103302 (2008)

    Google Scholar 

  45. Dang, M.T., Wantz, G., Bejbouji, H., Urien, M., Dautel, O.J., Vignau, L., Hirsch, L.: Polymeric solar cells based on P3HT:PCBM: Role of the casting solvent. Sol. Energy Mater Sol. Cells 95, 3408–3418 (2011)

    CAS  Google Scholar 

  46. Lee, J.Y.: Mixed-host-emitting layer for high-efficiency organic light-emitting diodes. J. Inf. Disp. 15, 139–144 (2014)

    CAS  Google Scholar 

  47. Lee, J., Choi, P., Kim, M., Lim, K., Hyeon, Y., Kim, S., Koo, K., Kim, S., Choi, B.: Investigation of the charge balance in green phosphorescent organic light-emitting diodes by controlling the mixed host emission layer. J. Nanosci. Nanotechnol. 18, 5908–5912 (2018)

    CAS  Google Scholar 

  48. Lee, J.-H., Shin, H., Kim, J.-M., Kim, K.-H., Kim, J.-J.: Exciplex-forming co-host-based red phosphorescent organic light-emitting diodes with long operational stability and high efficiency. ACS Appl. Mater. Interfaces 9, 3277–3281 (2017)

    CAS  Google Scholar 

  49. Fan, C., Lei, Y., Liu, Z., Wang, R., Lei, Y., Li, G., Xiong, Z., Yang, X.: High-efficiency phosphorescent hybrid organic: inorganic light-emitting diodes using a solution-processed small-molecule emissive layer. ACS Appl. Mater. Interfaces 7, 20769–20778 (2015)

    CAS  Google Scholar 

  50. Chopra, N., Swensen, J.S., Polikarpov, E., Cosimbescu, L., So, F., Padmaperuma, A.B.: High efficiency and low roll-off blue phosphorescent organic light-emitting devices using mixed host architecture. Appl. Phys. Lett. 97, 033304 (2010)

    Google Scholar 

  51. Bolink, H.J., Coronado, E., Repetto, D., Sessolo, M., Barea, E.M., Bisquert, J., Garcia-Belmonte, G., Prochazka, J., Kavan, L.: Inverted solution processable OLEDs using a metal oxide as an electron injection contact. Adv. Funct. Mater. 18, 145–150 (2008)

    CAS  Google Scholar 

  52. Nie, H., Hu, K., Cai, Y., Peng, Q., Zhao, Z., Hu, R., Chen, J., Su, S.-J., Qin, A., Tang, B.Z.: Tetraphenylfuran: aggregation-induced emission or aggregation-caused quenching? Mater. Chem. Front. 1, 1125–1129 (2017)

    CAS  Google Scholar 

  53. Han, T.-H., Kim, Y.-H., Kim, M.H., Song, W., Lee, T.-W.: Synergetic influences of mixed-host emitting layer structures and hole injection layers on efficiency and lifetime of simplified phosphorescent organic light-emitting diodes. ACS Appl. Mater. Interfaces 8, 6152–6163 (2016)

    CAS  Google Scholar 

  54. Han, T.-H., Choi, M.-R., Jeon, C.-W., Kim, Y.-H., Kwon, S.-K., Lee, T.-W.: Ultrahigh-efficiency solution-processed simplified small-molecule organic light-emitting diodes using universal host materials. Sci. Adv. 2, e1601428 (2016)

    Google Scholar 

  55. Kim, Y.-H., Han, T.-H., Lee, C., Kim, Y.-H., Yang, Y., Lee, T.-W.: Molecular-scale strategies to achieve high efficiency and low efficiency roll-off in simplified solution-processed organic light-emitting diodes. Adv. Funct. Mater. 2005292 (2020)

  56. Kim, Y.-H., Wolf, C., Cho, H., Jeong, S.-H., Lee, T.-W.: Highly efficient, simplified, solution-processed thermally activated delayed-fluorescence organic light-emitting diodes. Adv. Mater. 28, 734–741 (2016)

    CAS  Google Scholar 

  57. Rubinger, C.P.L., Haneef, H.F., Hewitt, C., Carroll, D., Anthony, J.E., Jurchescu, O.D.: Influence of solvent additives on the morphology and electrical properties of diF-TES ADT organic field-effect transistors. Org. Electron. 68, 205–211 (2019)

    CAS  Google Scholar 

  58. Zhang, J., Zhang, L., Li, X., Zhu, X., Yu, J., Fan, K.: Binary solvent engineering for high-performance two-dimensional perovskite solar cells. ACS Sustain. Chem. Eng. 7, 3487–3495 (2019)

    CAS  Google Scholar 

  59. He, Z., Zhang, Z., Bi, S., Chen, J.: Effect of polymer molecular weight on morphology and charge transport of small‑molecular organic semiconductors. Electron. Mater. Lett. 16, 441–450 (2020)

  60. Zhang, X., Yang, C., Zhang, Y., Hu, A., Li, M., Gao, L., Ling, H., Hang, T.: Sub-surface damage of ultra-thin monocrystalline silicon wafer Induced by dry polishing. Electron. Mater. Lett. 16, 355–362 (2020)

Download references

Acknowledgements

This study was conducted with support of the Dankook University Research Fund in 2018 (Award No. R201800660).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Bail.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bail, R., Kang, J.W., Kang, Y.J. et al. Binary Solvent Effects on Thermally Crosslinked Small Molecular Thin Films for Solution Processed Organic Light-Emitting Diodes. Electron. Mater. Lett. 17, 74–86 (2021). https://doi.org/10.1007/s13391-020-00258-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-020-00258-5

Keywords

Navigation