Skip to main content
Log in

Hibernation as a Stage of Ribosome Functioning

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

In response to stress, eubacteria reduce the level of protein synthesis and either disassemble ribosomes into the 30S and 50S subunits or turn them into translationally inactive 70S and 100S complexes. This helps the cell to solve two principal tasks: (i) to reduce the cost of protein biosynthesis under unfavorable conditions, and (ii) to preserve functional ribosomes for rapid recovery of protein synthesis until favorable conditions are restored. All known genes for ribosome silencing factors and hibernation proteins are located in the operons associated with the response to starvation as one of the stress factors, which helps the cells to coordinate the slowdown of protein synthesis with the overall stress response. It is possible that hibernation systems work as regulators that coordinate the intensity of protein synthesis with the energy state of bacterial cell. Taking into account the limited amount of nutrients in natural conditions and constant pressure of other stress factors, bacterial ribosome should remain most of time in a complex with the silencing/hibernation proteins. Therefore, hibernation is an additional stage between the ribosome recycling and translation initiation, at which the ribosome is maintained in a “preserved” state in the form of separate subunits, non-translating 70S particles, or 100S dimers. The evolution of the ribosome hibernation has occurred within a very long period of time; ribosome hibernation is a conserved mechanism that is essential for maintaining the energy- and resource-consuming process of protein biosynthesis in organisms living in changing environment under stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Abbreviations

HPF:

hibernation promoting factor

RaiA:

ribosome-associated inhibitor A

RbfA:

ribosome-binding factor A

RimM:

ribosome maturation factor M

RimP:

ribosome maturation factor P

RMF:

ribosome modulation factor

RsfS:

ribosomal silencing factor

REFERENCES

  1. Bergkessel, M., Basta, D. W., and Newman, D. K. (2016) The physiology of growth arrest: uniting molecular and environmental microbiology, Nat. Rev. Microbiol., 14, 549-562, doi: https://doi.org/10.1038/nrmicro.2016.107.

    Article  CAS  PubMed  Google Scholar 

  2. Monod, J. (1947) Kinetics of bacterial growth, Nature, 160, 105-106.

    Article  Google Scholar 

  3. Kolter, R., Siegele, D. A., and Tormo, A. (1993) The stationary phase of the bacterial life cycle, Annu. Rev. Microbiol., 47, 855-874, doi: https://doi.org/10.1146/annurev.mi.47.100193.004231.

    Article  CAS  PubMed  Google Scholar 

  4. Battesti, A., Majdalani, N., and Gottesman, S. (2011) The RpoS-mediated general stress response in Escherichia coli, Annu. Rev. Microbiol., 65, 189-213, doi: https://doi.org/10.1146/annurev-micro-090110-102946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gefen, O., Fridman, O., Ronin, I., and Balaban, N. Q. (2014) Direct observation of single stationary-phase bacteria reveals a surprisingly long period of constant protein production activity, Proc. Natl. Acad. Sci. USA, 111, 556-561, doi: https://doi.org/10.1073/pnas.1314114111.

    Article  CAS  PubMed  Google Scholar 

  6. Finkel, S. E. (2006) Long-term survival during stationary phase: evolution and the GASP phenotype, Nat. Rev. Microbiol., 4, 113-120, doi: https://doi.org/10.1038/nrmicro1340.

    Article  CAS  PubMed  Google Scholar 

  7. Williamson, K. S., Richards, L. A., Perez-Osorio, A. C., Pitts, B., McInnerney, K., Stewart, P. S., and Franklin, M. J. (2012) Heterogeneity in Pseudomonas aeruginosa biofilms includes expression of ribosome hibernation factors in the antibiotic-tolerant subpopulation and hypoxia-induced stress response in the metabolically active population, J. Bacteriol., 194, 2062-2073, doi: https://doi.org/10.1128/JB.00022-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tan, N. C., Cooksley, C. M., Roscioli, E., Drilling, A. J., Douglas, R., Wormald, P. J., and Vreugde, S. (2014) Small-colony variants and phenotype switching of intracellular Staphylococcus aureus in chronic rhinosinusitis, Allergy, 69, 1364-1371, doi: https://doi.org/10.1111/all.12457.

    Article  PubMed  Google Scholar 

  9. Tuchscherr, L., Medina, E., Hussain, M., Volker, W., Heitmann, V., et al. (2011) Staphylococcus aureus phenotype switching: an effective bacterial strategy to escape host immune response and establish a chronic infection, EMBO Mol. Med., 3, 129-141, doi: https://doi.org/10.1002/emmm.201000115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ancona, V., Li, W., and Zhao, Y. (2014) Alternative sigma factor RpoN and its modulation protein YhbH are indispensable for Erwinia amylovora virulence, Mol. Plant. Pathol., 15, 58-66, doi: https://doi.org/10.1111/mpp.12065.

    Article  CAS  PubMed  Google Scholar 

  11. Aitken, C. E., Petrov, A., and Puglisi, J. D. (2010) Single ribosome dynamics and the mechanism of translation, Annu. Rev. Biophys., 39, 491-513, doi: https://doi.org/10.1146/annurev.biophys.093008.131427.

    Article  CAS  PubMed  Google Scholar 

  12. Yusupov, M. M., Yusupova, G. Z., Baucom, A., Lieberman, K., Earnest, T. N., Cate, J. H., and Noller, H. F. (2001) Crystal structure of the ribosome at 5.5 Å resolution, Science, 292, 883-896, doi: https://doi.org/10.1126/science.1060089.

    Article  CAS  PubMed  Google Scholar 

  13. Ben-Shem, A., Garreau de Loubresse, N., Melnikov, S., Jenner, L., Yusupova, G., and Yusupov, M. (2011) The structure of the eukaryotic ribosome at 3.0 Å resolution, Science, 334, 1524-1529, doi: https://doi.org/10.1126/science.1212642.

    Article  CAS  PubMed  Google Scholar 

  14. Laursen, B. S., Sorensen, H. P., Mortensen, K. K., and Sperling-Petersen, H. U. (2005) Initiation of protein synthesis in bacteria, Microbiol. Mol. Biol. Rev., 69, 101-123, doi: https://doi.org/10.1128/MMBR.69.1.101-123.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tollerson, R., 2nd, and Ibba, M. (2020) Translational regulation of environmental adaptation in bacteria, J. Biol. Chem., 295, 10434-10445, doi: https://doi.org/10.1074/jbc.REV120.012742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Korostelev, A. A. (2011) Structural aspects of translation termination on the ribosome, RNA, 17, 1409-1421, doi: https://doi.org/10.1261/rna.2733411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pai, R. D., Zhang, W., Schuwirth, B. S., Hirokawa, G., Kaji, H., Kaji, A., and Cate, J. H. (2008) Structural insights into ribosome recycling factor interactions with the 70S ribosome, J. Mol. Biol., 376, 1334-1347, doi: https://doi.org/10.1016/j.jmb.2007.12.048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Simonetti, A., Marzi, S., Jenner, L., Myasnikov, A., Romby, P., Yusupova, G., Klaholz, B. P., and Yusupov, M. (2009) A structural view of translation initiation in bacteria, Cell. Mol. Life Sci., 66, 423-436.

    Article  CAS  PubMed  Google Scholar 

  19. Nilsson, J., and Nissen, P. (2005) Elongation factors on the ribosome, Curr. Opin. Struc. Biol., 15, 349-354, doi: https://doi.org/10.1016/j.sbi.2005.05.004.

    Article  CAS  Google Scholar 

  20. Huter, P., Arenz, S., Bock, L. V., Graf, M., Frister, J. O., et al. (2017) Structural basis for polyproline-mediated ribosome stalling and rescue by the translation elongation factor EF-P, Mol. Cell, 68, 515-527, doi: https://doi.org/10.1016/j.molcel.2017.10.014.

    Article  CAS  PubMed  Google Scholar 

  21. Golubev, A. A., Validov, S. Z., Usachev, K. S., and Yusupov, M. M. (2019) Elongation factor P: new mechanisms of function and an evolutionary diversity of translation regulation, Mol. Biol., 53, 501-512, doi: https://doi.org/10.1134/S0026893319040034.

    Article  CAS  Google Scholar 

  22. Zhou, D., Tanzawa, T., Lin, J., and Gagnon, M. G. (2020) Structural basis for ribosome recycling by RRF and tRNA, Nat. Struct. Mol. Biol., 27, 25-32, doi: https://doi.org/10.1038/s41594-019-0350-7.

    Article  CAS  PubMed  Google Scholar 

  23. Seshadri, A., and Varshney, U. (2006) Mechanism of recycling of post-termination ribosomal complexes in eubacteria: a new role of initiation factor 3, J. Biosciences, 31, 281-289, doi: https://doi.org/10.1007/Bf02703921.

    Article  CAS  Google Scholar 

  24. Udagawa, T., Shimizu, Y., and Ueda, T. (2004) Evidence for the translation initiation of leaderless mRNAs by the intact 70 S ribosome without its dissociation into subunits in eubacteria, J. Biol. Chem., 279, 8539-8546, doi: https://doi.org/10.1074/jbc.M308784200.

    Article  CAS  PubMed  Google Scholar 

  25. Prossliner, T., Winther, K. S., Sorensen, M. A., and Gerdes, K. (2018) Ribosome hibernation, Annu. Rev. Genet., 52, 321-348, doi: https://doi.org/10.1146/annurev-genet-120215-035130.

    Article  CAS  PubMed  Google Scholar 

  26. McCarthy, B. J. (1960) Variation in bacterial ribosomes, Biochim. Biophys. Acta, 39, 563-564.

    Article  CAS  Google Scholar 

  27. Beckert, B., Turk, M., Czech, A., Berninghausen, O., Beckmann, R., et al. (2018) Structure of a hibernating 100S ribosome reveals an inactive conformation of the ribosomal protein S1, Nat. Microbiol., 3, 1115-1121, doi: https://doi.org/10.1038/s41564-018-0237-0.

    Article  CAS  PubMed  Google Scholar 

  28. Khusainov, I., Vicens, Q., Ayupov, R., Usachev, K., Myasnikov, A., et al. (2017) Structures and dynamics of hibernating ribosomes from Staphylococcus aureus mediated by intermolecular interactions of HPF, EMBO J., 36, 2073-2087, doi: https://doi.org/10.15252/embj.201696105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Matzov, D., Aibara, S., Basu, A., Zimmerman, E., Bashan, A., Yap, M. N. F., Amunts, A., and Yonath, A. E. (2017) The cryo-EM structure of hibernating 100S ribosome dimer from pathogenic Staphylococcus aureus, Nat. Commun., 8, 723, doi: https://doi.org/10.1038/s41467-017-00753-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Polikanov, Y. S., Blaha, G. M., and Steitz, T. A. (2012) How hibernation factors RMF, HPF, and YfiA turn off protein synthesis, Science, 336, 915-918, doi: https://doi.org/10.1126/science.1218538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Khusainov, I., Fatkhullin, B., Pellegrino, S., Bikmullin, A., Liu, W. T., et al. (2020) Mechanism of ribosome shutdown by RsfS in Staphylococcus aureus revealed by integrative structural biology approach, Nat. Commun., 11, 1656, doi: https://doi.org/10.1038/s41467-020-15517-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yamagishi, M., Matsushima, H., Wada, A., Sakagami, M., Fujita, N., and Ishihama, A. (1993) Regulation of the Escherichia coli rmf gene encoding the ribosome modulation factor: growth phase- and growth rate-dependent control, EMBO J., 12, 625-630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shimada, T., Yoshida, H., and Ishihama, A. (2013) Involvement of cyclic AMP receptor protein in regulation of the rmf gene encoding the ribosome modulation factor in Escherichia coli, J. Bacteriol., 195, 2212-2219, doi: https://doi.org/10.1128/Jb.02279-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Izutsu, K., Wada, A., and Wada, C. (2001) Expression of ribosome modulation factor (RMF) in Escherichia coli requires ppGpp, Genes Cells, 6, 665-676, doi: https://doi.org/10.1046/j.1365-2443.2001.00457.x.

    Article  CAS  PubMed  Google Scholar 

  35. Song, S., and Wood, T. K. (2020) ppGpp ribosome dimerization model for bacterial persister formation and resuscitation, Biochem. Biophys. Res. Commun., 523, 281-286, doi: https://doi.org/10.1016/j.bbrc.2020.01.102.

    Article  CAS  PubMed  Google Scholar 

  36. Sato, A., Watanabe, T., Maki, Y., Ueta, M., Yoshida, H., Ito, Y., Wada, A., and Mishima, M. (2009) Solution structure of the E. coli ribosome hibernation promoting factor HPF: implications for the relationship between structure and function, Biochem. Biophys. Res. Commun., 389, 580-585, doi: https://doi.org/10.1016/j.bbrc.2009.09.022.

    Article  CAS  PubMed  Google Scholar 

  37. Neira, J. L., Giudici, A. M., Hornos, F., Arbe, A., and Rizzuti, B. (2018) The C terminus of the ribosomal-associated protein LrtA is an intrinsically disordered oligomer, Int. J. Mol. Sci., 19, doi: https://doi.org/10.3390/ijms19123902.

    Article  Google Scholar 

  38. Flygaard, R. K., Boegholm, N., Yusupov, M., and Jenner, L. B. (2018) Cryo-EM structure of the hibernating Thermus thermophilus 100S ribosome reveals a protein-mediated dimerization mechanism, Nat. Commun., 9, 4179, doi: https://doi.org/10.1038/s41467-018-06724-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Boerema, A. P., Aibara, S., Paul, B., Tobiasson, V., Kimanius, D., et al. (2018) Structure of the chloroplast ribosome with chl-RRF and hibernation-promoting factor, Nat. Plants, 4, 615-615, doi: https://doi.org/10.1038/s41477-018-0203-0.

    Article  Google Scholar 

  40. Usachev, K. S., Fatkhullin, B. F., Klochkova, E. A., Miftakhov, A. K., Golubev, A. A., et al. (2020) Dimerization of long hibernation promoting factor from Staphylococcus aureus: structural analysis and biochemical characterization, J. Struct. Biol., 209, 107408, doi: https://doi.org/10.1016/j.jsb.2019.107408.

    Article  CAS  PubMed  Google Scholar 

  41. Ueta, M., Yoshida, H., Wada, C., Baba, T., Mori, H., and Wada, A. (2005) Ribosome binding proteins YhbH and YfiA have opposite functions during 100S formation in the stationary phase of Escherichia coli, Genes Cells, 10, 1103-1112, doi: https://doi.org/10.1111/j.1365-2443.2005.00903.x.

    Article  CAS  PubMed  Google Scholar 

  42. Beckert, B., Abdelshahid, M., Schafer, H., Steinchen, W., Arenz, S., et al. (2017) Structure of the Bacillus subtilis hibernating 100S ribosome reveals the basis for 70S dimerization, EMBO J., 36, 2061-2072, doi: https://doi.org/10.15252/embj.201696189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Franken, L. E., Oostergetel, G. T., Pijning, T., Puri, P., Arkhipova, V., Boekema, E. J., Poolman, B., and Guskov, A. (2017) A general mechanism of ribosome dimerization revealed by single-particle cryo-electron microscopy, Nat. Commun., 8, 722, doi: https://doi.org/10.1038/s41467-017-00718-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. McKay, S. L., and Portnoy, D. A. (2015) Ribosome hibernation facilitates tolerance of stationary-phase bacteria to aminoglycosides, Antimicrob. Agents Chemother., 59, 6992-6999, doi: https://doi.org/10.1128/AAC.01532-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yusupov, M. M., and Spirin, A. S. (1986) Are there proteins between the ribosomal subunits? Hot tritium bombardment experiments, FEBS Lett., 197, 229-233, doi: https://doi.org/10.1016/0014-5793(86)80332-5.

    Article  CAS  PubMed  Google Scholar 

  46. Link, A. J., Robison, K., and Church, G. M. (1997) Comparing the predicted and observed properties of proteins encoded in the genome of Escherichia coli K-12, Electrophoresis, 18, 1259-1313, doi: https://doi.org/10.1002/elps.1150180807.

    Article  CAS  PubMed  Google Scholar 

  47. Agafonov, D. E., Kolb, V. A., Nazimov, I. V., and Spirin, A. S. (1999) A protein residing at the subunit interface of the bacterial ribosome, Proc. Natl. Acad. Sci. USA, 96, 12345-12349, doi: https://doi.org/10.1073/pnas.96.22.12345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Agafonov, D. E., Kolb, V. A., and Spirin, A. S. (2001) Ribosome-associated protein that inhibits translation at the aminoacyl-tRNA binding stage, EMBO Rep., 2, 399-402, doi: https://doi.org/10.1093/embo-reports/kve091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Di Pietro, F., Brandi, A., Dzeladini, N., Fabbretti, A., Carzaniga, T., Piersimoni, L., Pon, C. L., and Giuliodori, A. M. (2013) Role of the ribosome-associated protein PY in the cold-shock response of Escherichia coli, MicrobiologyOpen, 2, 293-307, doi: https://doi.org/10.1002/mbo3.68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hauser, R., Pech, M., Kijek, J., Yamamoto, H., Titz, B., et al. (2012) RsfA (YbeB) proteins are conserved ribosomal silencing factors, PLoS Genet., 8, e1002815, doi: https://doi.org/10.1371/journal.pgen.1002815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wanschers, B. F. J., Szklarczyk, R., Pajak, A., van den Brand, M. A. M., Gloerich, J., et al. (2012) C7orf30 specifically associates with the large subunit of the mitochondrial ribosome and is involved in translation, Nucleic Acids Res., 40, 4040-4051, doi: https://doi.org/10.1093/nar/gkr1271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jiang, M., Sullivan, S. M., Walker, A. K., Strahler, J. R., Andrews, P. C., and Maddock, J. R. (2007) Identification of novel Escherichia coli ribosome-associated proteins using isobaric tags and multidimensional protein identification techniques, J. Bacteriol., 189, 3434-3444, doi: https://doi.org/10.1128/Jb.00090-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Feaga, H. A., Kopylov, M., Kim, J. K., Jovanovic, M., and Dworkin, J. (2020) Ribosome dimerization protects the small subunit, J. Bacteriol., 202, e00009-20, doi: https://doi.org/10.1128/JB.00009-20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Traub, P., and Nomura, M. (1968) Structure and function of E. coli ribosomes. V. Reconstitution of functionally active 30S ribosomal particles from RNA and proteins, Proc. Natl. Acad. Sci. USA, 59, 777-784, doi: https://doi.org/10.1073/pnas.59.3.777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mulder, A. M., Yoshioka, C., Beck, A. H., Bunner, A. E., Milligan, R. A., et al. (2010) Visualizing ribosome biogenesis: parallel assembly pathways for the 30S subunit, Science, 330, 673-677, doi: https://doi.org/10.1126/science.1193220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nord, S., Bhatt, M. J., Tukenmez, H., Farabaugh, P. J., and Wikstrom, P. M. (2015) Mutations of ribosomal protein S5 suppress a defect in late-30S ribosomal subunit biogenesis caused by lack of the RbfA biogenesis factor, RNA, 21, 1454-1468, doi: https://doi.org/10.1261/rna.051383.115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sashital, D. G., Greeman, C. A., Lyumkis, D., Potter, C. S., Carragher, B., and Williamson, J. R. (2014) A combined quantitative mass spectrometry and electron microscopy analysis of ribosomal 30S subunit assembly in E. coli, Elife, 3, e04491, doi: https://doi.org/10.7554/eLife.04491.

    Article  PubMed Central  Google Scholar 

  58. Clatterbuck Soper, S. F., Dator, R. P., Limbach, P. A., and Woodson, S. A. (2013) In vivo X-ray footprinting of pre-30S ribosomes reveals chaperone-dependent remodeling of late assembly intermediates, Mol. Cell, 52, 506-516, doi: https://doi.org/10.1016/j.molcel.2013.09.020.

    Article  CAS  PubMed  Google Scholar 

  59. Wilson, D. N., and Nierhaus, K. H. (2007) The weird and wonderful world of bacterial ribosome regulation, Crit. Rev. Biochem. Mol. Biol., 42, 187-219, doi: https://doi.org/10.1080/10409230701360843.

    Article  CAS  PubMed  Google Scholar 

  60. Huang, Y. J., Swapna, G. V., Rajan, P. K., Ke, H., Xia, B., Shukla, K., Inouye, M., and Montelione, G. T. (2003) Solution NMR structure of ribosome-binding factor A (RbfA), a cold-shock adaptation protein from Escherichia coli, J. Mol. Biol., 327, 521-536, doi: https://doi.org/10.1016/s0022-2836(03)00061-5.

    Article  CAS  PubMed  Google Scholar 

  61. Rubin, S. M., Pelton, J. G., Yokota, H., Kim, R., and Wemmer, D. E. (2003) Solution structure of a putative ribosome binding protein from Mycoplasma pneumoniae and comparison to a distant homolog, J. Struct. Funct. Genom., 4, 235-243, doi: https://doi.org/10.1023/b:jsfg.0000016127.57320.82.

    Article  CAS  Google Scholar 

  62. Lovgren, J. M., Bylund, G. O., Srivastava, M. K., Lundberg, L. A., Persson, O. P., Wingsle, G., and Wikstrom, P. M. (2004) The PRC-barrel domain of the ribosome maturation protein RimM mediates binding to ribosomal protein S19 in the 30S ribosomal subunits, RNA, 10, 1798-1812, doi: https://doi.org/10.1261/rna.7720204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Leong, V., Kent, M., Jomaa, A., and Ortega, J. (2013) Escherichia coli rimM and yjeQ null strains accumulate immature 30S subunits of similar structure and protein complement, RNA, 19, 789-802, doi: https://doi.org/10.1261/rna.037523.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Grishin, N. V. (2001) KH domain: one motif, two folds, Nucleic Acids Res., 29, 638-643, doi: https://doi.org/10.1093/nar/29.3.638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Anantharaman, V., and Aravind, L. (2002) The PRC-barrel: a widespread, conserved domain shared by photosynthetic reaction center subunits and proteins of RNA metabolism, Genome Biol., 3, RESEARCH0061, doi: https://doi.org/10.1186/gb-2002-3-11-research0061.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Guo, Q., Goto, S., Chen, Y., Feng, B., Xu, Y., et al. (2013) Dissecting the in vivo assembly of the 30S ribosomal subunit reveals the role of RimM and general features of the assembly process, Nucleic Acids Res., 41, 2609-2620, doi: https://doi.org/10.1093/nar/gks1256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Berti, A. D., Shukla, N., Rottier, A. D., McCrone, J. S., Turner, H. M., et al. (2018) Daptomycin selects for genetic and phenotypic adaptations leading to antibiotic tolerance in MRSA, J. Antimicrob. Chemother., 73, 2030-2033, doi: https://doi.org/10.1093/jac/dky148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yoshida, H., and Wada, A. (2014) The 100S ribosome: ribosomal hibernation induced by stress, Wiley Interdiscip. Rev. RNA, 5, 723-732, doi: https://doi.org/10.1002/wrna.1242.

    Article  CAS  PubMed  Google Scholar 

  69. Ueta, M., Wada, C., Daifuku, T., Sako, Y., Bessho, Y., et al. (2013) Conservation of two distinct types of 100S ribosome in bacteria, Genes Cells, 18, 554-574, doi: https://doi.org/10.1111/gtc.12057.

    Article  CAS  PubMed  Google Scholar 

  70. Basu, A., Shields, K. E., and Yap, M. F. (2020) The hibernating 100S complex is a target of ribosome-recycling factor and elongation factor G in Staphylococcus aureus, J. Biol. Chem., 295, 6053-6063, doi: https://doi.org/10.1074/jbc.RA119.012307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research (project no. 20-34-70021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Yusupov.

Ethics declarations

The authors declare no conflict of interest. This article does not contain studies involving humans or other animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usachev, K.S., Yusupov, M.M. & Validov, S.Z. Hibernation as a Stage of Ribosome Functioning. Biochemistry Moscow 85, 1434–1442 (2020). https://doi.org/10.1134/S0006297920110115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920110115

Keywords

Navigation