In this work, a UV photodetector was fabricated by constructing a heterojunction between β phase GaOxNy prepared by atomic layer deposition and p-GaN prepared by metal organic chemical vapor deposition. The p-GaN layer shows an extremely sharp absorption characteristic with a cutoff edge of ∼365 nm, while β-GaOxNy shows a broad absorption behavior in the UV region due to its low crystal quality grown at low temperature (200 °C). The β-GaOxNy/GaN photodetector exhibits an obvious rectifying characteristic due to the formation of the type-II heterojunction and shows a high responsivity of 1.46 A/W at a bias voltage of −5 V and a rapid response speed (a rise time of 3.3 ms and a decay time of 6.8 ms). The investigation of the β-GaOxNy/GaN photodetector suggests a simple and effective strategy for next-generation high-performance optoelectronic devices.

1.
P.
Jaiswal
,
U. U.
Muazzam
,
A. S.
Pratiyush
,
N.
Mohan
,
S.
Raghavan
,
R.
Muralidharan
,
S. A.
Shivashankar
, and
D. N.
Nath
,
Appl. Phys. Lett.
112
,
021105
(
2018
).
2.
Ü.
Özgür
,
Y. I.
Alivov
,
C. L.
Liu
,
A.
Teke
,
M.
Reshchikov
,
S.
Doğan
,
V.
Avrutin
,
S. J.
Cho
, and
H.
Morkoç
,
J. Appl. Phys.
98
,
041301
(
2005
).
3.
D.
Walker
,
E.
Monroy
,
P.
Kung
,
J.
Wu
,
M.
Hamilton
,
F.
Sanchez
,
J.
Diaz
, and
M.
Razeghi
,
Appl. Phys. Lett.
74
,
762
(
1999
).
4.
A.
Ohtomo
,
M.
Kawasaki
,
T.
Koida
,
K.
Masubuchi
,
H.
Koinuma
,
Y.
Sakurai
,
Y.
Yoshida
,
T.
Yasuda
, and
Y.
Segawa
,
Appl. Phys. Lett.
72
,
2466
(
1998
).
5.
Y. R.
Ryu
,
T. S.
Lee
,
J. A.
Lubguban
,
A. B.
Corman
,
H. W.
White
,
J. H.
Leem
,
M. S.
Han
,
Y. S.
Park
,
C. J.
Youn
, and
W. J.
Kim
,
Appl. Phys. Lett.
88
,
052103
(
2006
).
6.
M. Y.
Liao
,
L. W.
Sang
,
T.
Teraji
,
M.
Imura
,
J.
Alvarez
, and
Y.
Koide
,
Jpn. J. Appl. Phys.
51
,
090115
(
2012
).
7.
G.
Cassabois
,
P.
Valvin
, and
B.
Gil
,
Nat. Photonics
10
,
262
(
2016
).
8.
H. P.
Ma
,
X. X.
Li
,
J. H.
Yang
,
P.
Cheng
,
W.
Huang
,
J.
Zhu
,
T. C.
Jen
,
Q.
Guo
,
H. L.
Lu
, and
D. W.
Zhang
,
Chem. Mater.
31
,
7405
(
2019
).
9.
D. Y.
Guo
,
Z. P.
Wu
,
P. G.
Li
,
Y. H.
An
,
H. H.
Liu
,
X. C.
Guo
,
H.
Yan
,
G. F.
Wang
,
C. L.
Sun
, and
L. H.
Li
,
Opt. Mater. Express
4
,
1067
(
2014
).
10.
Y. B.
Li
,
T.
Tokizono
,
M. Y.
Liao
,
M.
Zhong
,
Y.
Koide
,
I.
Yamada
, and
J. J.
Delaunay
,
Adv. Funct. Mater.
20
,
3972
(
2010
).
11.
L. P.
Dong
,
R. X.
Jia
,
C.
Li
,
B.
Xin
, and
Y. M.
Zhang
,
J. Alloys Compd.
712
,
379
(
2017
).
12.
S.
Nakagomi
,
T.
Momo
,
S.
Takahashi
, and
Y.
Kokubun
,
Appl. Phys. Lett.
103
,
072105
(
2013
).
13.
X. C.
Guo
,
N. H.
Hao
,
D. Y.
Guo
,
Z. P.
Wu
,
Y. H.
An
,
X. L.
Chu
,
L. H.
Li
,
P. G.
Li
,
M. M.
Lei
, and
W. H.
Tang
,
J. Alloys Compd.
660
,
136
(
2016
).
14.
P. G.
Li
,
H. Z.
Shi
,
K.
Chen
,
D. Y.
Guo
,
W.
Cui
,
Y. S.
Zhi
,
S. L.
Wang
,
Z. P.
Wu
,
Z. G.
Chen
, and
W. H.
Tang
,
J. Mater. Chem. C
5
,
10562
(
2017
).
15.
R. P.
Joshi
,
A. N.
Dharamsi
, and
J.
McAdoo
,
Appl. Phys. Lett.
64
,
3611
(
1994
).
16.
Y. M.
Zhao
and
W. R.
Donaldson
,
IEEE J. Quantum Electron.
56
,
1
(
2020
).

Supplementary Material

You do not currently have access to this content.