Skip to main content

Advertisement

Log in

Material decomposition with dual- and multi-energy computed tomography

  • Prospective Articles
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Conventional computed tomography (CT) remains the workhorse of cross-sectional medical imaging. But dual- and multi-energy CT allows for more specific material decomposition, enabling distinct advantages in the clinical setting. In this review, we describe the basic principles behind material decomposition in dual- and multi-energy CT, outline the techniques used to acquire images, and explore how enhanced material decomposition leads to improved patient care. We also explore areas of active research and future directions, including photon-counting CT, that have the potential to revolutionize CT in clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. G.N. Hounsfield: Computerized transverse axial scanning (tomography). 1. Description of system. Br. J. Radiol. 46, 1016–1022 (1973).

    Article  CAS  Google Scholar 

  2. W.H. Marshall, Jr, W. Easter, and L.M. Zatz: Analysis of the dense lesion at computed tomography with dual kVp scans. Radiology 124, 87–89 (1977).

    Article  Google Scholar 

  3. L.M. Zatz: The effect of the kVp level on EMI values. Selective imaging of various materials with different kVp settings. Radiology 119, 683–688 (1976).

    Article  CAS  Google Scholar 

  4. R.A. Rutherford, B.R. Pullan, and I. Isherwood: Measurement of effective atomic number and electron density using an EMI scanner. Neuroradiology 11, 15–21 (1976).

    Article  CAS  Google Scholar 

  5. R.E. Alvarez and A. Macovski: Energy-selective reconstructions in X-ray computerized tomography. Phys. Med. Biol. 21, 733–744 (1976).

    Article  CAS  Google Scholar 

  6. T.G. Flohr, C.H. McCollough, H. Bruder, M. Petersilka, K. Gruber, C. Süss, M. Grasruck, K. Stierstorfer, B. Krauss, R. Raupach, A.N. Primak, A. Küttner, S. Achenbach, C. Becker, A. Kopp, and B.M. Ohnesorge: First performance evaluation of a dual-source CT (DSCT) system. Eur. Radiol. 16, 256–268 (2006).

    Article  Google Scholar 

  7. A. Graser, T.R.C. Johnson, H. Chandarana, and M. Macari: Dual energy CT: preliminary observations and potential clinical applications in the abdomen. Eur. Radiol. 19, 13–23 (2009).

    Article  Google Scholar 

  8. M. Petersilka, K. Stierstorfer, H. Bruder, and T. Flohr: Strategies for scatter correction in dual source CT. Med. Phys. 37, 5971–5992 (2010).

    Article  CAS  Google Scholar 

  9. A.N. Primak, J.C. Ramirez Giraldo, X. Liu, L. Yu, and C.H. McCollough: Improved dual-energy material discrimination for dual-source CT by means of additional spectral filtration. Med. Phys. 36, 1359–1369 (2009).

    Article  CAS  Google Scholar 

  10. S. Achenbach, M. Marwan, T. Schepis, T. Pflederer, H. Bruder, T. Allmendinger, M. Petersilka, K. Anders, M. Lell, A. Kuettner, D. Ropers, W.G. Daniel, and T. Flohr: High-pitch spiral acquisition: a new scan mode for coronary CT angiography. J. Cardiovasc. Comput. Tomogr. 3, 117–121 (2009).

    Article  Google Scholar 

  11. T.R.C. Johnson, B. Krauss, M. Sedlmair, M. Grasruck, H. Bruder, D. Morhard, C. Fink, S. Weckbach, M. Lenhard, B. Schmidt, T. Flohr, M.F. Reiser, and C.R. Becker: Material differentiation by dual energy CT: initial experience. Eur. Radiol. 17, 1510–1517 (2007).

    Article  Google Scholar 

  12. J.L. Wichmann, A.D. Hardie, U.J. Schoepf, L.M. Felmly, J.D. Perry, A. Varga-Szemes, S. Mangold, D. Caruso, C. Canstein, T.J. Vogl, and C.N. De Cecco: Single- and dual-energy CT of the abdomen: comparison of radiation dose and image quality of 2nd and 3rd generation dual-source CT. Eur. Radiol. 27, 642–650 (2017).

    Article  Google Scholar 

  13. M. Kachelrieß: Iterative reconstruction techniques: what do they mean for cardiac CT? Curr. Cardiovasc. Imaging Rep. 6, 268–281 (2013).

    Article  Google Scholar 

  14. A. Macovski, R.E. Alvarez, J.L.-H. Chan, J.P. Stonestrom, and L.M. Zatz: Energy dependent reconstruction in X-ray computerized tomography. Comput. Biol. Med. 6, 325–336 (1976).

    Article  CAS  Google Scholar 

  15. T.R.C. Johnson: Dual-energy CT: general principles. AJR Am. J. Roentgenol. 199, S3–S8 (2012).

    Article  Google Scholar 

  16. C.H. McCollough, S. Leng, L. Yu, and J.G. Fletcher: Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology 276, 637–653 (2015).

    Article  Google Scholar 

  17. H.W. Goo and J.M. Goo: Dual-energy CT: new horizon in medical imaging. Korean J. Radiol. 18, 555–569 (2017).

    Article  Google Scholar 

  18. B. Li: Dual-energy CT with fast-kVp switching and Its applications in orthopedics. OMICS J. Radiol. 02 (2013). https://doi.org/10.4172/2167-7964.1000137.

  19. H.S. Takrouri, M.M. Alnassar, A. Amirabadi, P.S. Babyn, R. Moineddin, N.L. Padfield, G. BenDavid, and A.S. Doria: Metal artifact reduction: added value of rapid-kilovoltage-switching dual-energy CT in relation to single-energy CT in a piglet animal model. AJR Am. J. Roentgenol. 205, W352–W359 (2015).

    Article  Google Scholar 

  20. U. Mahmood, N. Horvat, J.V. Horvat, D. Ryan, Y. Gao, G. Carollo, R. DeOcampo, R.K. Do, S. Katz, S. Gerst, C.R. Schmidtlein, L. Dauer, Y. Erdi, and L. Mannelli: Rapid switching kVp dual energy CT: value of reconstructed dual energy CT images and organ dose assessment in multiphasic liver CT exams. Eur. J. Radiol. 102, 102–108 (2018).

    Article  Google Scholar 

  21. A. Vlassenbroek: Dual layer CT. In Dual Energy CT in Clinical Practice, edited by T. Johnson, C. Fink, S.O. Schönberg, and M.F. Reiser (Springer, Berlin, 2011) pp. 21–34.

    Chapter  Google Scholar 

  22. N. Rassouli, M. Etesami, A. Dhanantwari, and P. Rajiah: Detector-based spectral CT with a novel dual-layer technology: principles and applications. Insights Imaging 8, 589–598 (2017).

    Article  Google Scholar 

  23. R.H.H. Wellenberg, M.F. Boomsma, J.A.C. van Osch, A. Vlassenbroek, J. Milles, M.A. Edens, G.J. Streekstra, C.H. Slump, and M. Maas: Quantifying metal artefact reduction using virtual monochromatic dual-layer detector spectral CT imaging in unilateral and bilateral total hip prostheses. Eur. J. Radiol. 88, 61–70 (2017).

    Article  CAS  Google Scholar 

  24. S. Oda, T. Nakaura, D. Utsunomiya, Y. Funama, N. Taguchi, M. Imuta, Y. Nagayama, and Y. Yamashita: Clinical potential of retrospective on-demand spectral analysis using dual-layer spectral detector-computed tomography in ischemia complicating small-bowel obstruction. Emerg. Radiol. 24, 431–434 (2017).

    Article  Google Scholar 

  25. A.P. Sauter, F.K. Kopp, D. Münzel, J. Dangelmaier, M. Renz, B. Renger, R. Braren, A.A. Fingerle, E.J. Rummeny, and P.B. Noël: Accuracy of iodine quantification in dual-layer spectral CT: influence of iterative reconstruction, patient habitus and tube parameters. Eur. J. Radiol. 102, 83–88 (2018).

    Article  Google Scholar 

  26. F. van Ommen, H.W.A.M. de Jong, J.W. Dankbaar, E. Bennink, T. Leiner, and A.M.R. Schilham: Dose of CT protocols acquired in clinical routine using a dual-layer detector CT scanner: a preliminary report. Eur. J. Radiol. 112, 65–71 (2019).

    Article  Google Scholar 

  27. L. Ananthakrishnan, X. Duan, Y. Xi, M.A. Lewis, M.S. Pearle, J.A. Antonelli, H. Goerne, E.M. Kolitz, S. Abbara, R.E. Lenkinski, J.R. Fielding, and J.R. Leyendecker: Dual-layer spectral detector CT: non-inferiority assessment compared to dual-source dual-energy CT in discriminating uric acid from non-uric acid renal stones ex vivo. Abdom. Radiol. 43, 3075–3081 (2018).

    Article  Google Scholar 

  28. G.V. Punjabi: Multi-energy spectral CT: adding value in emergency body imaging. Emerg. Radiol. 25, 197–204 (2018).

    Article  Google Scholar 

  29. K. Kalisz, N. Rassouli, A. Dhanantwari, D. Jordan, and P. Rajiah: Noise characteristics of virtual monoenergetic images from a novel detector-based spectral CT scanner. Eur. J. Radiol. 98, 118–125 (2018).

    Article  Google Scholar 

  30. T. Heye, R.C. Nelson, L.M. Ho, D. Marin, and D.T. Boll: Dual-energy CT applications in the abdomen. AJR Am. J. Roentgenol. 199, S64–S70 (2012).

    Article  Google Scholar 

  31. A.C. Silva, B.G. Morse, A.K. Hara, R.G. Paden, N. Hongo, and W. Pavlicek: Dual-energy (spectral) CT: applications in abdominal imaging. Radiographics 31, 1031–1046 (2011).

    Article  Google Scholar 

  32. T.J. Vogl, B. Schulz, R.W. Bauer, T. Stöver, R. Sader, and A.M. Tawfik: Dual-energy CT applications in head and neck imaging. AJR Am. J. Roentgenol. 199, S34–S39 (2012).

    Article  Google Scholar 

  33. X. Sui, X. Xu, L. Song, Q. Du, X. Wang, Z. Jing, and W. Song: Effect of third-generation dual-source CT technology on image quality of Low-dose chest CT. Zhongguo Yi Xue Ke Xue yuan Xue Bao 39, 17–20 (2017).

    Google Scholar 

  34. N. Schicchi, M. Fogante, P. Esposto Pirani, G. Agliata, M.C. Basile, M. Oliva, A. Agostini, and A. Giovagnoni: Third-generation dual-source dual-energy CT in pediatric congenital heart disease patients: state-of-the-art. Radiol. Med. 124, 1238–1252 (2019).

    Article  Google Scholar 

  35. M.J. Willemink, M. Persson, A. Pourmorteza, N.J. Pelc, and D. Fleischmann: Photon-counting CT: technical principles and clinical prospects. Radiology 289, 293–312 (2018).

    Article  Google Scholar 

  36. K. Taguchi and J.S. Iwanczyk: Vision 20/20: single photon counting x-ray detectors in medical imaging. Med. Phys. 40, 100901 (2013).

    Article  Google Scholar 

  37. S. Leng, M. Bruesewitz, S. Tao, K. Rajendran, A.F. Halaweish, N.G. Campeau, J.G. Fletcher, and C.H. McCollough: Photon-counting detector CT: system design and clinical applications of an emerging technology. Radiographics 39, 729–743 (2019).

    Article  Google Scholar 

  38. J.P. Schlomka, E. Roessl, R. Dorscheid, S. Dill, G. Martens, T. Istel, C. Bäumer, C. Herrmann, R. Steadman, G. Zeitler, A. Livne, and R. Proksa: Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography. Phys. Med. Biol. 53, 4031–4047 (2008).

    Article  CAS  Google Scholar 

  39. E. Roessl and R. Proksa: K-edge imaging in x-ray computed tomography using multi-bin photon counting detectors. Phys. Med. Biol. 52, 4679–4696 (2007).

    Article  CAS  Google Scholar 

  40. G.A. Rodriguez-Granillo, P. Carrascosa, S. Cipriano, M. De Zan, A. Deviggiano, C. Capunay, and R.C. Cury: Beam hardening artifact reduction using dual energy computed tomography: implications for myocardial perfusion studies. Cardiovasc. Diagn. Ther. 5, 79–85 (2015).

    Google Scholar 

  41. M. Katsura, J. Sato, M. Akahane, A. Kunimatsu, and O. Abe: Current and novel techniques for metal artifact reduction at CT: practical guide for radiologists. Radiographics 38, 450–461 (2018).

    Article  Google Scholar 

  42. M.J. Connolly, M.D.F. McInnes, M. El-Khodary, T.A. McGrath, and N. Schieda: Diagnostic accuracy of virtual non-contrast enhanced dual-energy CT for diagnosis of adrenal adenoma: a systematic review and meta-analysis. Eur. Radiol. 27, 4324–4335 (2017).

    Article  Google Scholar 

  43. A. Helck, N. Hummel, F.G. Meinel, T. Johnson, K. Nikolaou, and A. Graser: Can single-phase dual-energy CT reliably identify adrenal adenomas? Eur. Radiol. 24, 1636–1642 (2014).

    Article  CAS  Google Scholar 

  44. D. Marin, D. Davis, K. Roy Choudhury, B. Patel, R.T. Gupta, A. Mileto, and R.C. Nelson: Characterization of small focal renal lesions: diagnostic accuracy with single-phase contrast-enhanced dual-energy CT with material attenuation analysis compared with conventional attenuation measurements. Radiology 284, 737–747 (2017).

    Article  Google Scholar 

  45. E.S. Wisenbaugh, R.G. Paden, A.C. Silva, and M.R. Humphreys: Dual-energy vs conventional computed tomography in determining stone composition. Urology 83, 1243–1247 (2014).

    Article  Google Scholar 

  46. A.N. Primak, J.G. Fletcher, T.J. Vrtiska, O.P. Dzyubak, J.C. Lieske, M.E. Jackson, J.C. Williams, Jr, and C.H. McCollough: Noninvasive differentiation of uric acid versus non-uric acid kidney stones using dual-energy CT. Acad. Radiol. 14, 1441–1447 (2007).

    Article  Google Scholar 

  47. M. Qu, G. Jaramillo-Alvarez, J.C. Ramirez-Giraldo, Y. Liu, X. Duan, J. Wang, T.J. Vrtiska, A.E. Krambeck, J. Lieske, and C.H. McCollough: Urinary stone differentiation in patients with large body size using dual-energy dual-source computed tomography. Eur. Radiol. 23, 1408–1414 (2013).

    Article  Google Scholar 

  48. G.S.K. Fung, S. Kawamoto, B.R. Matlaga, K. Taguchi, X. Zhou, E.K. Fishman, and B.M.W. Tsui: Differentiation of kidney stones using dual-energy CT with and without a tin filter. AJR Am. J. Roentgenol. 198, 1380–1386 (2012).

    Article  Google Scholar 

  49. J.L. Nute, M.C. Jacobsen, A. Chandler, D.D. Cody, and D. Schellingerhout: Dual-Energy computed tomography for the characterization of intracranial hemorrhage and calcification: a systematic approach in a phantom system. Invest. Radiol. 52, 30–41 (2017).

    Article  Google Scholar 

  50. S. Dekeyzer, O. Nikoubashman, B. Lutin, J. De Groote, E. Vancaester, S. De Blauwe, D. Hemelsoet, M. Wiesmann, and L. Defreyne: Distinction between contrast staining and hemorrhage after endovascular stroke treatment: one CT is not enough. J. Neurointerv. Surg. 9, 394–398 (2017).

    Article  Google Scholar 

  51. H. Almqvist, S. Holmin, and M.V. Mazya: Dual energy CT after stroke thrombectomy alters assessment of hemorrhagic complications. Neurology 93, e1068–e1075 (2019).

    Article  Google Scholar 

  52. R. Gupta, C.M. Phan, C. Leidecker, T.J. Brady, J.A. Hirsch, R.G. Nogueira, and A.J. Yoo: Evaluation of dual-energy CT for differentiating intracerebral hemorrhage from iodinated contrast material staining. Radiology 257, 205–211 (2010).

    Article  Google Scholar 

  53. K. Uotani, Y. Watanabe, M. Higashi, T. Nakazawa, A.K. Kono, Y. Hori, T. Fukuda, S. Kanzaki, N. Yamada, T. Itoh, K. Sugimura, and H. Naito: Dual-energy CT head bone and hard plaque removal for quantification of calcified carotid stenosis: utility and comparison with digital subtraction angiography. Eur. Radiol. 19, 2060–2065 (2009).

    Article  Google Scholar 

  54. J.R. Wortman, J.W. Uyeda, U.P. Fulwadhva, and A.D. Sodickson: Dual-energy CT for abdominal and pelvic trauma. Radiographics 38, 586–602 (2018).

    Article  Google Scholar 

  55. N. Dalbeth, H.K. Choi, L.A.B. Joosten, P.P. Khanna, H. Matsuo, F. Perez-Ruiz, and L.K. Stamp: Gout. Nat. Rev. Dis. Primers 5, 69 (2019).

    Article  Google Scholar 

  56. M. Kaup, J.L. Wichmann, J.-E. Scholtz, M. Beeres, W. Kromen, M.H. Albrecht, T. Lehnert, M. Boettcher, T.J. Vogl, and R.W. Bauer: Dual-energy CT-based display of bone marrow edema in osteoporotic vertebral compression fractures: impact on diagnostic accuracy of radiologists with varying levels of experience in correlation to MR imaging. Radiology 280, 510–519 (2016).

    Article  Google Scholar 

  57. G. Bier, M.N. Bongers, H. Ditt, B. Bender, U. Ernemann, and M. Horger: Enhanced gray-white matter differentiation on non-enhanced CT using a frequency selective non-linear blending. Neuroradiology 58, 649–655 (2016).

    Article  Google Scholar 

  58. M.F. Mohammed, O. Marais, A. Min, D. Ferguson, S. Jalal, F. Khosa, M. O’Keeffe, T. O’Connell, H. Schmiedeskamp, B. Krauss, A. Rohr, and S. Nicolaou: Unenhanced dual-energy computed tomography: visualization of brain edema. Invest. Radiol. 53, 63–69 (2018).

    Article  Google Scholar 

  59. H. Chou, T.Y. Chin, and W.C.G. Peh: Dual-energy CT in gout: a review of current concepts and applications. J. Med. Radiat. Sci. 64, 41–51 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Bhayana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhayana, R., Parakh, A. & Kambadakone, A. Material decomposition with dual- and multi-energy computed tomography. MRS Communications 10, 558–565 (2020). https://doi.org/10.1557/mrc.2020.86

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2020.86

Navigation