Skip to main content
Log in

Reduced 4D oscillators and orbital elements in Keplerian systems: Cushman–Deprit coordinates

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We study the reduction and regularization processes of perturbed Keplerian systems from an astronomical point of view. Our approach connects axially symmetric perturbed 4-DOF oscillators with Keplerian systems, including the case of rectilinear solutions. This is done through a preliminary reduction recently studied by the authors. Then, the reduction program continues by removing the Keplerian energy. For each value of the semi-major axis, we explain the astronomical meaning of the sextuples defining the orbit space \(\mathbb {S}^2\times \mathbb {S}^2\) and its connection with the orbital elements. More precisely, we present alternative sextuple coordinates for the set of bounded Keplerian orbits that ‘separate’ the node of the orbital plane from the argument of perigee giving the Laplace vector in that plane. Still, the reduction of the axial symmetry defined by the third component of the angular momentum is performed. For the thrice reduced space \(\varGamma _{0,L,H}\) we propose the Cushman–Deprit coordinates, a variant to the set given by Cushman. The main feature of these variables is that they are all with the same dimensions, which is convenient for the normalization procedure. As an application of the proposed scheme, we study the spatial lunar problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barut, A., Schneider, C., Wilson, R.: Quantum theory of infinite quantum theory of infinite component fields. J. Math. Phys. 20, 1979 (1979)

    Article  Google Scholar 

  • Coffey, S., Deprit, A., Miller, B.: The critical inclination in artificial satellite theory. Celest. Mech. Dyn. Astron. 39, 306–405 (1986)

    MathSciNet  MATH  Google Scholar 

  • Cornish, F.H.J.: The hydrogen atom and the four-dimensional harmonic oscillator. J. Phys. A: Math. Gener. 17(2), 323 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  • Crespo, F.: Hopf fibration reduction of a quartic model. Universidad de Murcia, An application to rotational and orbital dynamics. PhD (2015)

  • Crespo, F., Ferrer, S.: Alternative reduction by stages of Keplerian systems. Positive, negative, and zero energy. SIAM J. Appl. Dyn. Syst. 19(2), 1525–1539 (2020). https://doi.org/10.1137/19M1264060

    Article  MathSciNet  MATH  Google Scholar 

  • Crespo, F., Díaz, G., Ferrer, S., Lara, M.: Poisson and symplectic reductions of 4-DOF isotropic oscillators. The van der Waals system as benchmark. Appl. Math. Nonlinear Sci. 1, 473–492 (2016)

    Article  MathSciNet  Google Scholar 

  • Cushman, R.: A survey of normalization techniques applied to perturbed Keplerian systems. Dynamics Reported. In: Expositions in Dynamical Systems (N.S.) (1), pp. 54–112 (1992)

  • Cushman, R.: Reduction, Brouwer’s Hamiltonian an the critical inclination. Celest. Mech. Dyn. Astron. 31, 409–429 (1983)

    MathSciNet  MATH  Google Scholar 

  • Deprit, A.: Canonical transformations depending on a small parameter. Celest. Mech. 1, 12–29 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  • Deprit, A.: Delaunay normalizations. Celest. Mech. 26, 9–21 (1982)

    Article  ADS  Google Scholar 

  • Díaz, G., Egea, J., Ferrer, S., der Meer, J.V., Vera, J.: Relative equilibria and bifurcations in the generalized van der Waals 4-d oscillator. Phys. D 239(16), 1610–1625 (2010)

    Article  MathSciNet  Google Scholar 

  • Egea, J., Ferrer, S., der Meer, J.V.: Hamiltonian fourfold 1:1 resonance with two rotational symmetries. Regular and Chaotic Dynamic 12, 664–674 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  • Ferrer, S.: Keplerian systems. orbital elements and reductions. Monografías Academia de Ciencias Zaragoza. VI Jornadas de Trabajo en Mecánica Celeste, Señorío de Bertiz 25, 121–136 (2003)

  • Ferrer, S.: The projective Andoyer transformation and the connection between the 4-d isotropic oscillator and Kepler systems. arXiv:1011.3000v1 [nlin.SI] (2010)

  • Ferrer, S., Crespo, F.: Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems. J. Geom. Mech. 6(4), 479–502 (2014)

    Article  MathSciNet  Google Scholar 

  • Ferrer, S., Crespo, F.: Alternative angle-based approach to the \(\cal{KS}\)-map. An interpretation through symmetry and reduction. J. Geom. Mech. 10(3), 359–372 (2018)

    Article  MathSciNet  Google Scholar 

  • Hori, G.: Theory of general perturbations with unspecified canonical variables. Publ. Astron. Soc. Jpn. 18, 287–296 (1966)

    ADS  Google Scholar 

  • Ikeda, M., Miyachi, Y.: On the mathematical structure of the symmetry of some simple dynamical systems. Mat. Jpn. 15, 127 (1971)

    MathSciNet  MATH  Google Scholar 

  • Iñarrea, M., Lanchares, V., Palacián, J.F., Pascual, A.I., Salas, J.P., Yanguas, P.: Symplectic coordinates on \({S}^2\times {S}^2\) for perturbed keplerian problems: Application to the dynamics of a generalised Störmer problem. J. Differ. Equ. 250(3), 1386–1407 (2011). https://doi.org/10.1016/j.jde.2010.09.027

    Article  ADS  MATH  Google Scholar 

  • Iwai, T.: On a “conformal” Kepler problem and its reduction. J. Math. Phys. 22(8), 1633–1639 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  • Kustaanheimo, P.: Spinor regularization of the Kepler motion. Ann. Univ. Turku. 73(3), 1964 (1964)

    MathSciNet  MATH  Google Scholar 

  • Kustaanheimo, P., Stiefel, E.: Perturbation theory of Kepler motion based on spinor regularization. J. Reine Angew. Math. 218, 204–219 (1965)

    MathSciNet  MATH  Google Scholar 

  • Lara, M., Palacián, J.F.: Hill problem analytical theory to the order four: application to the computation of frozen orbits around planetary satellites. Mathematical Problems in Engineering (2009)

  • Lara, M., Palacián, J.F., Russell, R.P.: Mission design through averaging of perturbed keplerian systems: the paradigm of an enceladus orbiter. Celest. Mech. Dyn. Astron. 108, 1–22 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  • Marsden, J., Weinstein, A.: Reduction of symplectic manifolds with symmetry. Rep. Math. Phys. 5(1), 121–130 (1974). https://doi.org/10.1016/0034-4877(74)90021-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Marsden, J., Misiolek, G., Ortega, J.P., Perlmutter, M., Ratiu, T.: Hamiltonian Reduction by Stages. Lecture Notes in Mathematics. Springer, Berlin (2007)

    MATH  Google Scholar 

  • Meyer, K.R.: Symmetries and integrals in mechanics. In: Peixoto, M. (ed.) Dynamical Systems, pp. 259–272. Academic Press, London (1973)

    Chapter  Google Scholar 

  • Meyer, K.R., Palacián, J.F., Yanguas, P.: Invariant tori in the lunar problem. Publ. Mat. EXTRA, 353–394 (2015)

    Article  MathSciNet  Google Scholar 

  • Meyer, K., Palacián, J., Yanguas, P.: Normalization through invariants in n-dimensional Kepler problems. Regular and Chaotic Dynamics 23, 389–417 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  • Moser, J., Zehnder, E.J.: Notes on Dynamical Systems. AMS and the Courant Institute of Mathematical Sciences at New York University (2005)

  • Moser, J.: Regularization of Kepler’s problem and the averaging method on a manifold. Commun. Pure Appl. Math. XXIII, 609–636 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  • Palacián, J.F., Sayas, F., Yanguas, P.: Regular and singular reductions in the spatial three-body problem. Qual. Theory Dyn. Syst 12, 143–182 (2013)

    Article  MathSciNet  Google Scholar 

  • Reeb, B.: Sur certaines proprietés topologiques des trajectoires des systémes dynamiques. Acad. R. Sci. Lett. et Beaux-Arts de Belgique 27(9), 1952 (1952)

    MATH  Google Scholar 

  • Roa, J.: Regularization in Orbital Mechanics. Theory and Practice. De Gruyter, Berlin (2017)

    Book  Google Scholar 

  • Saha, P.: Interpreting the Kustaanheimo–Stiefel transform in gravitational dynamics. Mon. Not. R. Astron. Soc. 400, 228–231 (2009)

    Article  ADS  Google Scholar 

  • San Juan, J., Lara, M.: Normalizaciones de orden alto en el problema de hill. Monogr. Real Acad. Cienc. Zaragoza 28, 23–32 (2006)

    Google Scholar 

  • Stiefel, E., Scheifele, G.: Linear and Regular Celestial Mechanics. Springer, Berlin (1971)

    Book  Google Scholar 

  • van der Meer, J.C.: The Kepler system as a reduced 4D harmonic oscillator. J. Geom. Phys. 92(Supplement C), 181–193 (2015). https://doi.org/10.1016/j.geomphys.2015.02.016

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • van der Meer, J.C., Cushman, R.: Constrained normalization of Hamiltonian systems and perturbed Keplerian motion. J. Appl. Math. Phys. 37, 402–424 (1986)

    MathSciNet  MATH  Google Scholar 

  • Yanguas, P., Palacián, J., Meyer, K., Dumas, H.: Periodic solutions in hamiltonian systems, averaging, and the lunar problem. SIAM J. Appl. Dyn. Syst. 7(2), 311–340 (2008)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We deeply appreciate comments and suggestions of the anonymous referees which contributed to the improvement and clarity of the paper. Support from Research Agencies of Spain and Chile is acknowledged. They came in the form of research Projects MTM2015-64095-P and ESP2017-87271-P, of the Ministry of Science of Spain and from the Project 11160224 of the Chilean national agency FONDECYT. The author J.L.Z. acknowledges support from CONICYT PhD/2017-21170836.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ferrer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrer, S., Crespo, F. & Zapata, J.L. Reduced 4D oscillators and orbital elements in Keplerian systems: Cushman–Deprit coordinates. Celest Mech Dyn Astr 132, 52 (2020). https://doi.org/10.1007/s10569-020-09995-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-020-09995-z

Keywords

Navigation