Skip to main content
Log in

Variational Problems of Surfaces in a Sphere

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

Let \(x:M \to \mathbb{S}{^{n + p}}(1)\) be an n-dimensional submanifold immersed in an (n + p)-dimensional unit sphere \(\mathbb{S}{^{n + p}}(1)\). In this paper, we study n-dimensional submanifolds immersed in \(\mathbb{S}{^{n + p}}(1)\) which are critical points of the functional \({\cal S}(x) = \int_M {{S^{{n \over 2}}}} dv\), where S is the squared length of the second fundamental form of the immersion x. When \(x:M \to \mathbb{S}{^{2 + p}}(1)\) is a surface in \(\mathbb{S}{^{2 + p}}(1)\), the functional \({\cal S}(x) = \int_M {{S^{{n \over 2}}}} dv\) represents double volume of image of Gaussian map. For the critical surface of \({\cal S}(x)\), we get a relationship between the integral of an extrinsic quantity of the surface and its Euler characteristic. Furthermore, we establish a rigidity theorem for the critical surface of \({\cal S}(x)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bryant, R. L.: A duality theorem for Willmore surfaces. J. Differential Geom., 20(1), 23–53 (1984)

    Article  MathSciNet  Google Scholar 

  2. Chen, B. Y.: Some conformai invariants of submanifolds and their applications (English, with Italian summary). Boll. Un. Mat. Ital., 10(4), 380–385 (1974)

    MathSciNet  Google Scholar 

  3. Chen, B. Y.: On the total curvature of immersed manifolds. I. An inequality of Fenchel—Borsuk—Willmore. Amer. J. Math., 93, 148–162 (1971)

    Article  MathSciNet  Google Scholar 

  4. Chen, B. Y.: On the total curvature of immersed manifolds. II. Mean curvature and length of second fundamental form. Amer. J. Math., 94, 799–809 (1972)

    Article  MathSciNet  Google Scholar 

  5. Chern, S. S., do Carmo, M., Kobayashi, S.: Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields (Proc. Conf. for M. Stone, Univ. Chicago, Chicago, Ill., 1968), 59–75, Springer, New York, 1970

    MATH  Google Scholar 

  6. Guo, Z.: Willmore submanifolds in the unit sphere. Collect. Math., 55(3), 279–287 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Guo, Z., Li, H., Wang, C. P.: The second variational formula for Willmore submanifolds in \({ n}\). Results Math., 40(1–4), 205–225 (2001)

    Article  MathSciNet  Google Scholar 

  8. Guo, Z., Yin, B. C.: Variational problems of total mean curvature of submanifolds in a sphere. Proc. Amer. Math. Soc., 144(8), 3563–3568 (2016)

    Article  MathSciNet  Google Scholar 

  9. Huisken, G.: Flow by mean curvature of convex surfaces into spheres. J. Differential Geom., 20(1), 237–266 (1984)

    Article  MathSciNet  Google Scholar 

  10. Hu, Z., Li, H.: Willmore submanifolds in Riemannian manifolds. In: Proceedings of the Workshop, Contem. Geom. and Related Topics, World Scientific, May, 2002, 251–275

  11. Lawson, H. B.: Local rigidity theorems for minimal hypersurfaces. Ann. of Math. (2), 89(1), 187–197 (1969)

    Article  MathSciNet  Google Scholar 

  12. Li, A. M., Li, J. M.: An intrinsic rigidity theorem for minimal submanifolds in a sphere. Arch. Math., 58(6), 582–594 (1992)

    Article  MathSciNet  Google Scholar 

  13. Li, H.: Willmore hypersurfaces in a sphere. Asian J. Math., 5(2), 365–377 (2001)

    Article  MathSciNet  Google Scholar 

  14. Li, H.: Willmore submanifolds in a sphere. Math. Res. Lett., 9(5–6), 771–790 (2002)

    Article  MathSciNet  Google Scholar 

  15. Marques, F. C., Neves, A.: Min-max theory and the Willmore conjecture. Ann. of Math. (2), 179(2), 683–782 (2014)

    Article  MathSciNet  Google Scholar 

  16. Nomizu, K., Smyth, B.: A formula of Simons’ type and hypersurfaces with constant mean curvature. J. Differential Geom., 3, 367–377 (1969)

    Article  MathSciNet  Google Scholar 

  17. Okumura, M.: Hypersurfaces and a pinching problem on the second fundamental tensor. Amer. J. Math., 96, 207–213 (1974)

    Article  MathSciNet  Google Scholar 

  18. Simons, J.: Minimal varieties in Riemannian manifolds. Ann. of Math. (2), 88(1), 62–105 (1968)

    Article  MathSciNet  Google Scholar 

  19. Wang, C. P.: Möbius geometry of submanifolds in \({ n}\). Manuscripta Math., 96(4), 517–534 (1998)

    Article  MathSciNet  Google Scholar 

  20. Weiner, J. L.: On a problem of Chen, Willmore, et al.. Indiana Univ. Math. J., 27(1), 19–35 (1978)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to express his thanks to Professor Zhen Guo for his helpful suggestions and comments. The author would also like to thank the referees for helpful comments and suggestions which made this paper more accurate and readable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bang Chao Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, B.C. Variational Problems of Surfaces in a Sphere. Acta. Math. Sin.-English Ser. 37, 657–665 (2021). https://doi.org/10.1007/s10114-020-9441-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-020-9441-y

Keywords

MR(2010) Subject Classification

Navigation