Skip to main content
Log in

Over expression of a Chitinase 2 gene from Chinese Wild Strawberry improves resistance to anthracnose disease in transgenic Arabidopsis thaliana

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Strawberry (Fragaria × ananassa Duch.) is one of the most widely cultivated fruit crop. Anthracnose caused by Colletotrichum spp. is a devastating disease of strawberry, causing large-scale strawberry losses worldwide. Chitinases act as defence proteins and are crucial for plant response to pathogens. Here, we isolated a class V Chitinase gene (designed as FnCHIT2, GenBank accession number MN709779) from Chinese wild diploid strawberry Fragaria nilgerrensis Schlecht (F. nilgerrensis), a species that exhibits high tolerance to anthracnose. Gene expression analysis showed that FnCHIT2 expression was highly induced after Colletotrichum gloeosporiodes inoculation and salicylic acid (SA) treatment. Subcellular localization analysis revealed the presence of FnCHIT2 in the plasma membrane. Recombinant FnCHIT2 protein was successfully expressed in E. coli Rosetta (DE3). Furthermore, we transformed FnCHIT2 into Col-0 wild type A. thaliana to perform functional analysis and evaluated the functions of Colletotrichum higginsianum and Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). FnCHIT2 overexpression in A. thaliana showed enhanced resistance to C. higginsianum and Pst DC3000. Enhanced disease resistance of FnCHIT2 transgenic plants to C. higginsianum was correlated with pathogenesis-related gene 1 (AtPR1) and plant defensin 1.2 (AtPDF1.2) gene expression levels. These results provide evidence that FnCHIT2 may play an important role in response to fungal pathogens in strawberry. Our study provides an important theoretical reference for future strawberry resistance breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

F. nilgerrensis :

Fragaria nilgerrensis Schlecht

C. gloeosporiodes :

Colletotrichum gloesporioides

SA:

Salicylic acid

JA:

Jasmonic acid

A. thaliana :

Arabidopsis thaliana

Pst DC3000:

Pseudomonas syringae Pv. tomato DC3000

C. higginsianum :

Colletotrichum higginsianum

PR1:

Pathogenesis-related gene 1

PDF1.2:

Plant defensing 1.2

PCR:

Polymerase chain reaction

qRT-PCR:

Quantitative real-time PCR

IPTG:

Isopropythio β-D- thiogalactoside

PVDF:

Polyvinylidene difluoride

TBST:

Tris-Buffered Saline Tween-20

PEG:

Polyethylene glycol

ROS:

Reactive oxygen species

hpi:

Hours post inoculation

dpi:

Days post inoculation

NBT:

Nitro blue tetrazolium

References

  • Abeles FB, Bonhart RP, Forrence LE, Habig WH (1971) Preparation and purification of glucanase and chitinase from bean leaves. Plant Physiol 47:129–134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Akhan A, Shih DS (2004) Molecular cloning, characterization, and expression analysis of two class II chitinase genes from the strawberry plant. Plant Sci 166:753–762

    Google Scholar 

  • Amil-Ruiz F, Garrido-Gala J, Gadea J, Blanco-Portales R, Muñoz-Mérida A, Trelles O, de Los SB, Arroyo FT, Aguado-Puig A, Romero F, Mercado JÁ, Pliego-Alfaro F, Muñoz-Blanco J, Caballero JL (2016) Partial activation of SA- and JA-defensive pathways in strawberry upon Colletotrichum acutatum interaction. Front Plant Sci 7:1036

    PubMed  PubMed Central  Google Scholar 

  • Brotmana Y, Landau U, Pnini S, Lisec J, Balazadeh S, Mueller-Roeberd B, Zilberstein A, Willmitzera L, Chet I, Viterbo A (2012) The LysM Receptor-Like kinase LysM RLK1 is required to activate defense and abiotic-stress responses induced by overexpression of fungal chitinases in Arabidopsis Plants. Nat Plants 5:1113–1124

    Google Scholar 

  • Cao RH, Liu XG, Gao KX, Mendgen K, Kang ZS, Gao JF, Dai Y, Wang X (2009) Mycoparasitism of endophytic fungi isolated from reed on soilborne phytopathogenic fungi and production of cell wall-degrading enzymes in vitro. Curr Microbiol 59:584–592

    CAS  PubMed  Google Scholar 

  • Cao SL, Wang Y, Li ZQ, Gao F, Zhou YJ, Zhang GF, Feng JC (2019) Genome-Wide identification and expression analyses of the chitinases under cold and osmotic stress in Ammopiptanthus nanus. Genes 10:472

    CAS  PubMed Central  Google Scholar 

  • Casado-Díaz A, Encinas-Villarejo S, Santos B, Schiliro E, Yuberoserrano E, Amilruiz F, Pocovi M, Pliegoalfaro F, Dorado G, Rey M, Romero F, Munozblanco J, Caballero JL (2006) Analysis of strawberry genes differentially expressed in response to Colletotrichum infection. Physiol Plantarum 128:633–650

    Google Scholar 

  • Chalavi V, Tabaeizadeh Z (2003) Enhanced resistance to Verticillium dahliae in transgenic strawberry plants expressing a Lycopersicon chilense Chitinase gene. J Am Soc Hortic Sci 128:747–753

    CAS  Google Scholar 

  • Chen JJ, Piao YL, Liu YM, Li XN, Piao ZY (2018) Genome-wide identification and expression analysis of chitinase gene family in Brassica rapa reveals its role in clubroot resistance. Plant Sci 270:257–276

    CAS  PubMed  Google Scholar 

  • Chopra R, Saini S (2014) Transformation of blackgram (Vigna mungo (L.) Hepper) by barley chitinase and ribosome-inactivating protein genes towards improving resistance to corynespora leaf spot fungal disease. Appl Bioch Biotech 174:2791–2800

    CAS  Google Scholar 

  • Chung PC, Wu HY, Wang YW, Ariyawansa HA, Hu HP, Hung TH, Tzean SS, Chung CL (2020) Diversity and pathogenicity of Colletotrichum species causing strawberry anthracnose in Taiwan and description of a new species Colletotrichum miaoliense sp. nov. Sci Rep 10:14664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    CAS  PubMed  Google Scholar 

  • Dana MD, Pintor-Toro JA, Cubero B (2006) Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiol 142:722–730

    PubMed Central  Google Scholar 

  • Dong X, Zhao YC, Ran X, Guo LX, Zhao DG (2017) Overexpression of a New chitinase gene EuCHIT2 enhances resistance to Erysiphe cichoracearum DC in tobacco plants. Int J Mol Sci 18:2361

    PubMed Central  Google Scholar 

  • Dubouzet JG, Maeda S, Sugano S, Ohtake M, Hayashi N, Ichikawa T, Kondou Y, Kuroda H, Horri Y, Matsui M, Oda K (2011) Screening for resistance against Pseudomonas syringae in rice-FOX Arabidopsis lines identified a putative receptor-like cytoplasmic kinase gene that confers resistance to major bacterial and fungal pathogens in Arabidopsis and rice. Plant Biotechnol J 9:466–485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Durechova D, Jopcik M, Rajninec M, Moravcikova J, Libantova J (2019) Expression of Drosera rotundifolia chitinase in transgenic tobacco plants enhanced their antifungal potential. Mol Biotechnol 61:916–928

    CAS  PubMed  Google Scholar 

  • Gan P, Ikeda K, Irieda H, Narusaka M, O’Connell RJ, Narusaka Y, Takano Y, Kubo Y, Shirasu K (2013) Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. New Phytol 197:1236–1249

    CAS  PubMed  Google Scholar 

  • GonzáleZ FF, Davey MR, Sanchez EC, Wilson ZA (2015) Conferred resistance to Botrytis cinerea in Lilium by overexpression of the RCH10 chitinase gene. Plant Cell Rep 34:1201–1209

    Google Scholar 

  • Grover A (2012) Plant Chitinases: genetic diversity and physiological roles. Crit Rev Plant Sci 3:57–73

    Google Scholar 

  • Gu QN, Yuan QF, Zhao D, Huang JB, Hsiang T, Wei YD, Zheng L (2019) Acetyl-coenzyme A synthetase gene ChAcs1 is essential for lipid metabolism, carbon utilization and virulence of the hemibiotrophic fungus Colletotrichum higginsianum. Mol Plant Pathol 20:107–123

    CAS  PubMed  Google Scholar 

  • Han YC, Zeng XG, Xiang FY, Zhang QH, Guo C, Chen FY, Gu YC (2018) Carbendazim sensitivity in populations of Colletotrichum gloeosporioides complex infecting strawberry and yams in Hubei Province of China. J Integr Agr 17:1391–1400

    CAS  Google Scholar 

  • Hong JK, Hwang BK (2006) Promoter activation of pepper class II basic chitinase gene, CAChi2, and enhanced bacterial disease resistance and osmotic stress tolerance in the CAChi2-overexpressing Arabidopsis. Planta 223:433–448

    CAS  PubMed  Google Scholar 

  • Kang JN, Park MY, Kim WN, Kang HG, Jin SH, Yang DH, Min KS (2017) Resistance of transgenic zoysiagrass overexpressing the zoysiagrass class II chitinase gene Zjchi2 against Rhizoctonia solani AG2-2 (IV). Plant Biotechnol Rep 11:229–238

    Google Scholar 

  • Karimi K, Arzanlou M, Pertot I (2019) Weeds as potential inoculum reservoir for Colletotrichum nymphaeae causing strawberry anthracnose in iran and rep-PCR fingerprinting as useful marker to differentiate C. acutatum complex on strawberry. Front Microbiol 10:129

    PubMed  PubMed Central  Google Scholar 

  • Katagiri F, Thilmony R, He SY (2002) The Arabidopsis thaliana-Pseudomonas syringae interaction. Arabidopsis Book/Am Soc Plant Biol 1:1–35

    Google Scholar 

  • Khan A, Nasir IA, Tabassum B, Aaliya K, Tariq M, Rao AQ (2017) Expression studies of chitinase gene in transgenic potato against Alternaria solani. Plant Cell Tiss Org 128:563–576

    CAS  Google Scholar 

  • Kim KH, Jae-Bok Y, Hyo-Guen P, Eun Woo P, Young Ho K (2004) Structural modifications and programmed cell death of chili pepper fruit related to resistance responses to Colletotrichum gloeosporioides infection. Phytopathology 94:1295–1304

    PubMed  Google Scholar 

  • Kwon YR, Kim SH, Jung MS, Kim MS, Oh JE, Ju HW, Kim K, Vierling E, Lee H, Hong SW (2007) Arabidopsis hot2 encodes an endochitinase-like protein that is essential for tolerance to heat, salt and drought stresses. Plant J 49:184–193

    CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–695

    CAS  PubMed  Google Scholar 

  • Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4:181

    CAS  PubMed  Google Scholar 

  • Leah R, Tommerup H, Svendsen I, Mundy J (1991) Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J Biol Chem 266:1564–1573

    CAS  PubMed  Google Scholar 

  • Liu Z, Shi L, Yang S, Lin Y, Weng Y, Li X, Hussain A, Noman A, He S (2017) Functional and promoter analysis of ChiIV3, a Chitinase of pepper plant, in response to Phytophthora capsici infection. Int J Mol Sci 18:1661

    PubMed Central  Google Scholar 

  • Mercado JA, Barceló M, Pliego C, Rey JL, Muñoz-Blanco J, Ruano-Rosa D, López-Herrera C, Santos B, Romero-Muñoz F, Pliego-Alfaro F (2015) Expression of the β-1,3-glucanase gene bgn13.1 from trichoderma harzianum in strawberry increases tolerance to crown rot diseases but interferes with plant growth. Transgenic Res 24:979–989

    CAS  PubMed  Google Scholar 

  • Moraes SRG, Tanaka FAO, Massola NS (2013) Histopathology of Colletotrichum gloeosporioides on guava fruit (Psidium guajava L.). Rev Bras Frutic 35:657–664

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Narusaka Y, Narusaka M, Park P, Kubo Y, Hirayama T, Seki M, Shiraishi T, Ishida J, Nakashima M, Enju A, Sakurai T, Satou M, Kobayashi M, Shinozaki T (2004) RCH1, a Locus in Arabidopsis that confers resistance to the hemibiotrophic fungal pathogen Colletotrichum higginsianum. Mol Plant-Microbe In 17:749–762

    CAS  Google Scholar 

  • Nelson BK, Cai X (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51(6):1126–1136

    CAS  PubMed  Google Scholar 

  • Noguchi YJ, Mochizuki T, Sone (2002) Breeding of a new zromatic strawberry by interspecific hybridization Fragaria ananassa × F. nilgerrensis. Engei Gakkai zasshi 71:208–213

    Google Scholar 

  • O’Connell RJ, Perfect S, Hughes B, Carzaniga R, Bailey JA, Green J (2000) Dissecting the cell biology of Colletotrichum. In: Infection processes. Colletotrichum, pp 57–76

  • Plaumann PL, Schmidpeter J, Dahl M, Taher LL, Koch C (2018) A dispensable chromosome is required for virulence in the hemibiotrophic plant pathogen Colletotrichum higginsianum. Front Microbiol 9:1–15

    Google Scholar 

  • Prasad K, Bhatnagar-Mathur P, Waliyar F, Sharma KK (2013) Overexpression of a chitinase gene in transgenic peanut confers enhanced resistance to major soil borne and foliar fungal pathogens. J Plant Biochem Biot 22:222–233

    CAS  Google Scholar 

  • Pulla RK, Lee OR, In JG, Paevin S, Kim YJ, Shim JS, Sun H, Kim YJ, Senthil K, Yang DC (2011) Identification and characterization of class I chitinase in Panax ginseng C. A Meyer Mol Biol Rep 38:95–102

    CAS  Google Scholar 

  • Punja ZK, Zhang YY (1993) Plant Chitinases and their roles in resistance to fungal diseases. J Nematol 25:526–540

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shah MR, Mukherjee PK, Eapen S (2010) Expression of a fungal endochitinase gene in transgenic tomato and tobacco results in enhanced tolerance to fungal pathogens. Physiol Mol Biol Pla 16:39–51

    CAS  Google Scholar 

  • Silva DE, Crous PW, Ades PK, Hyde KD, Taylor PW (2017) Life styles of Colletotrichum species and implications for plant biosecurity. Fungal Biol Rev 31(3):155–168

    Google Scholar 

  • Singh HR, Deka M, Das S (2015) Enhanced resistance to blister blight in transgenic tea (Camellia sinensis [L.] O. Kuntze) by overexpression of class I chitinase gene from potato (Solanum tuberosum). Funct Integr Genomic 15:461–480

    CAS  Google Scholar 

  • Suzuki T, Tanaka-Miwa Ebihara Y, Ito Y, Uematsu S (2010) Genetic polymorphism and virulence of Colletotrichum gloeosporioides isolated from strawberry (Fragaria × ananassa Duchesne). J Gen Plant Pathol 76:247–253

    CAS  Google Scholar 

  • Takahara HD, Endl H (2009) Flow cytometric purification of Colletotrichum higginsianum biotrophic hyphae from Arabidopsis leaves for stage-specific transcriptome analysis. Plant J 59:672–683

    CAS  PubMed  Google Scholar 

  • Tariq M, Khan A, Tabassum B, Toufiq N, Bhatti MU, Riaz S, Nasir IA, Husnain T (2018) Antifungal activity of chitinase II against Colletotrichum falcatum Went.causing red rot disease in transgenic sugarcane. Turk J Biol 42:45–53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vellicce GR, Ricci JCD, Hernández L, Castagnaro AP (2006) Enhanced resistance to Botrytis cinerea mediated by the transgenic expression of the chitinase gene ch5B in strawberry. Transgenic Res 15:57–68

    CAS  PubMed  Google Scholar 

  • Voll LM, Zell MB, Engelsdorf T, Saur A, Wheeler MG, Drincovich MF, Weber APM, Maurino VG (2012) Loss of cytosolic NADP-malic enzyme 2 in Arabidopsis thaliana is associated with enhanced susceptibility to Colletotrichum higginsianum. New Phytol 195:189–202

    CAS  PubMed  Google Scholar 

  • Wang LJ, Li SH (2006) Thermo tolerance and related antioxidant enzyme activities induced by heat acclimation and salicylic acid in grape (Vitis vinifera L.) leaves. Plant Growth Regul 49:137–144

    Google Scholar 

  • Wang F, Zhang F, Chen MM, Liu ZH, Zhang ZH, Fu JF, Ma Y (2017) Comparative transcriptomics reveals differential gene expression related to Colletotrichum gloeosporioides resistance in the octoploid strawberry. Front Plant Sci 8:1–10

    Google Scholar 

  • Wang M, Xu ZC, Ding Am, Kong YZ (2018) Genome-wide identification and expression profiling analysis of the xyloglucan Endotransglucosylase/Hydrolase gene family in tobacco (Nicotiana tabacum L.). Genes 9:273

    PubMed Central  Google Scholar 

  • Wen ZF, Yao LP, Wan R, Li Z, Liu CH, Wang XP (2015) Ectopic expression in Arabidopsis thaliana of an NB-ARC encoding putative disease resistance gene from wild Chinese Vitis pseudoreticulata enhances resistance to phytopathogenic fungi and bacteria. Front Plant Sci 6:1087

    PubMed  PubMed Central  Google Scholar 

  • Widiastuti A, Yoshino M, Hasegawa M, Nitta Y, Sato T (2012) Heat shock-induced resistance increases chitinase-1 gene expression and stimulates salicylic acid production in melon (Cucumis melo L.). Physiol Mol Plant 82:51–55

    Google Scholar 

  • Xie L, Zhang J, Wan Y, Hu D (2010) Identification of Colletotrichum spp. isolated from strawberry in Zhejiang Province and Shanghai City, China. J Zhejiang Univ Sci B 11:61–70

    PubMed  Google Scholar 

  • Xu J, Xu XY, Tian LL, Wang GL, Zhang XY, Wang XY, Guo WZ (2016) Discovery and identification of candidate genes from the chitinase gene family for Verticillium dahliae resistance in cotton. Sci Rep 6:29022

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Kang HH, Zhang GQ, Chen YH, Kong XZ, Guo QF, Wang W (2015) Overexpression of TaUb2 enhances disease resistance to Pseudomonas syringae pv. tomato DC3000 in tobacco. Physiol Mol Plant Patho 90:98–104

    CAS  Google Scholar 

  • Zhang QY, Zhang LQ, Song LL, Duan K, Li N, Wang YX, Gao QH (2016) The different interactions of Colletotrichum gloeosporioides with two strawberry varieties and the involvement of salicylic acid. Hortic Res 3:16007

    PubMed  PubMed Central  Google Scholar 

  • Zhang LQ, Huang X, He CY, Zhang QY, Zou XH, Duan K, Gao QH (2018) Novel fungal pathogenicity and leaf defense strategies are revealed by simultaneous transcriptome analysis of Colletotrichum fructicola and strawberry infected by this fungus. Front Plant Sci 9:434

    PubMed  PubMed Central  Google Scholar 

  • Zhang HY, Liu X, Zhang XY, Qin NN, Xu KF, Yin WH, Zheng YQ, Song YY, Zeng RS, Liu J (2020) Phosphoinositide 3-Kinase promotes oxidative burst, stomatal closure and plant immunity in bacterial invasion. Front Plant Sci. https://doi.org/10.3389/fpls.2019.01740

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang JX, Lei YY, Wang BT, Li S, Yu S, Wang Y, Li H, Liu YX, Ma Y, Dai HY, Wang JH, Zhang ZH (2020) The high quality of diploid strawberry (Fragaria nilgerrensis) provides new insights into anthocyanin accumulation. Plant Biotechnol J. https://doi.org/10.1111/pbi.13351

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu Q, Lamb CJ (1991) Isolation and characterization of a rice gene encoding a basic chitinase. Mol Gen Genet 226:289–296

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (31701907), the Natural Science Foundation of Fujian Province (2018J01703), the Educational and Scientific Research Program for Young and Middle-aged Instructor of Fujian Province (KLa17022A), and the Natural Science Funds for Distinguished Young Scholar of the Fujian Agriculture and Forestry University (xjq201723).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifeng Wen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11816_2020_648_MOESM1_ESM.docx

Supplementary file1 (DOCX 141 KB) Supplementary Materials: Available online supporting material. Fig. S1. The nucleotide and deduced amino acid sequences of FnCHIT2 from F. nilgerrensis. The underlined sequences indicate the ChiA protein domain, and sequences in the square frame indicate initiation code and termination code, respectively. Fig. S2. Cloning of FnCHIT2 from F. nilgerrensis, generation of the 35S:FnCHIT2-YFP vector, and generation of the overexpression vector and prokaryotic expression vector. (A) PCR cloning of FnCHIT2 from wild F. nilgerrensis. a, DL 2000 DNA marker. (B). PCR product of FnCHIT2 amplification. Double digest of 35S:FnCHIT2-GFP vector with BamH I and Kpn I. c, 15Kb DNA marker; h, double digest of 35S: 35S:FnCHIT2-GFP vector with BamH I and Kpn I. (C) Double digest of 35S:FnCHIT2 over expression vector with BamH I and Kpn I. c, 15Kb DNA marker. d, Double digest of 35S:FnCHIT2 vector after FnCHIT2 under 35S promoter. D. Double digest of prokaryotic expression vector with BamH I and Kpn I. Double digest of prokaryotic expression vector after FnCHIT2 inserted into PET-32A. f, 12K DNA marker. Table S2primer sequences used in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Z., Bai, J., Wang, L. et al. Over expression of a Chitinase 2 gene from Chinese Wild Strawberry improves resistance to anthracnose disease in transgenic Arabidopsis thaliana. Plant Biotechnol Rep 14, 725–736 (2020). https://doi.org/10.1007/s11816-020-00648-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-020-00648-z

Keyword

Navigation