Skip to main content
Log in

Antagonistic effects of EDTA against biochemical toxicity induced by Cr(VI) in Hordeum vulgare L. seedlings

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

The present study aims at the amelioration of chromium Cr(VI) toxicity using ethylenediaminetetraacetic acid (EDTA), and to understand the interactive effects of Cr(VI) and EDTA with respect to seedling growth, lipid peroxidation as assessed from malondialdehyde, pigments and antioxidative enzymes in Hordeum vulgare L. Following multivariate statistical techniques were used to study binary interactions between Cr(VI) and EDTA: 2-way ANOVA, Tukey’s multiple comparison test, multiple regression with interaction between Cr an EDTA, beta coefficients, path analysis and non-metric multidimensional scaling (NMDS). The present study revealed that the EDTA decreases lipid peroxidation induced by Cr(VI) and ameliorates the antioxidative defence system and pigment constitution of seedlings grown in Cr(VI) containing media. EDTA–Cr(VI) interaction decreased the Cr content in the seedlings which may be attributed to the chelating effect of EDTA. The root and shoot bioconcentration factors, the ratio of Cr content in the plant to that in the medium, were decreased by addition of EDTA to Cr(VI), indicating a decrease in the uptake of Cr by the seedlings from the medium. NMDS revealed that the ranking of the studied parameters is maintained by ordination on two axes. The study established that EDTA is antagonistic to Cr(VI) induced biochemical toxicity, and improves the antioxidative defence system, increases the chlorophyll content, and decreases Cr uptake in barley seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Allen SE, Grimshaw HM, Parkinson JA, Quarmby C, Roberts JD (1976) Chemical analysis. In: Chapman SB (ed) Methods in plant ecology. Blackwell Scientific Publications, Oxford, pp 424–426

    Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Athalye VV, Ramachandran V, D’Souza TJ (1995) Influence of chelating agents on plant uptake of 51Cr, 210Pb and 210Po. Environ Pollut 89:47–53

    Article  CAS  Google Scholar 

  • Bala R, Thukral AK (2011) Phytoremediation of Cr(VI) by Spirodela polyrrhiza (L.) Schleiden employing reducing and chelating agents. Int J Phytoremed 13:465–491

    Article  CAS  Google Scholar 

  • Bali AS, Sidhu GP, Kumar V (2020) Root exudates ameliorate cadmium tolerance in plants: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-020-01012-x

    Article  Google Scholar 

  • Bareen FE (2012) Chelate assisted phytoextraction using oilseed brassicas. Environ Pollut 21:289–311

    Article  CAS  Google Scholar 

  • Baudo R, Canzian E, Galanti G, Guilizzoni P, Rapetti G (1985) Relationships between heavy metals and aquatic organisms in lake Mezzola hydrographic system (norther Italy, 6). Metal concentrations in two species of emergent macrophytes. Mem Ital Idrobiol 43:161–180

    Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov S, Zakarova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865

    Article  Google Scholar 

  • Bloem E, Haneklaus S, Haensch R, Schnug E (2017) EDTA application on agricultural soils affects microelement uptake of plants. Sci Total Environ 577:166–173

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Carlberg I, Mannervik B (1975) Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J Biol Chem 250(14):5475–5480

    CAS  PubMed  Google Scholar 

  • Chigbo C, Batty L (2013) Effect of EDTA and citric acid on phytoremediation of Cr–B [a] P-co-contaminated soil. Environ Sci Pollut Res 20(12):8955–8963

    Article  CAS  Google Scholar 

  • Das BC, Panda A, Sahoo PK, Jena S, Padhi P (2014) Effect of chromium (VI) on wheat seedlings and the role of chelating agents. Curr Sci 106:1387–1393

    CAS  Google Scholar 

  • Gautam M, Agrawal M (2017) Phytoremediation of metals using vetiver (Chrysopogonzizanioides) (L.) Roberty) grown under different levels of red mud sludge amended soil. J Geochem Expl 182:218–227

    Article  CAS  Google Scholar 

  • Gomes-Junior RA, Moldes CA, Delite FS, Pompeu GB, Gratao PL, Mazzafera P, Lea PG, Azevedo RA (2006) Antioxidant metabolism of coffee cell suspension cultures in response to cadmium. Chemosphere 65:1330–1337

    Article  CAS  PubMed  Google Scholar 

  • Govindasamy C, Arulpriya M, Ruban P, Jenifer FL, Ilayaraja A (2011a) Concentration of heavy metals in seagrasses tissue of the Palk Strait, Bay of Bengal. Int J Environ Sci 2(1):145–153

    CAS  Google Scholar 

  • Govindasamy C, Arulpriya M, Ruban P, Jenifer FL, Ilayaraja A (2011b) Concentration of heavy metals in seagrasses tissue of the Palk Strait, Bay of Bengal. Int J Environ Sci 2:145–153

    CAS  Google Scholar 

  • Grčman H, Velikonja-Bolta S, Vodnik D, Kos B, Lestan D (2001) EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity. Plant Soil 235:105–114

    Article  Google Scholar 

  • Gupta M, Sinha S, Chandra P (1994) Uptake and toxicity op metals in Scirpus lacustris L. and Bacopa monnieri l. J Environ Sci Health Part A 29(10):2185–2202

    Google Scholar 

  • Gwóźdź EA, Przymusiński R, Rucińska R, Deckert J (1997) Plant cell responses to heavy metals: molecular and physiological aspects. Acta Physiol Plant 19(4):459–465

    Article  Google Scholar 

  • Habiba U, Ali S, Farid M, Shakoor MB, Rizwan M, Ibrahim M, Ali B (2015) EDTA enhanced plant growth, antioxidant defense system, and phytoextraction of copper by Brassica napus L. Environ Sci Pollut Res 22(2):1534–1544

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–198

    Article  CAS  PubMed  Google Scholar 

  • Huang JW, Chen J, Berti WR, Cunningham SD (1997) Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31(3):800–805

    Article  CAS  Google Scholar 

  • Kambhampati MS (2013) EDTA enhanced phytoremediation of copper contaminated soils using chickpea (Cicer aeritinum L.). Bull Environ Contam Toxicol 91(3):310–313

    Article  CAS  PubMed  Google Scholar 

  • Kanwar MK, Poonam Pal S, Bhardwaj R (2015) Involvement of Asada–Halliwell pathway during phytoremediation of chromium (VI) in Brassica juncea L. plants. Int J Phytoremed 17(12):1237–1243

    Article  CAS  Google Scholar 

  • Kono Y (1978) Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys 186:189–195

    Article  CAS  PubMed  Google Scholar 

  • Kotaś J, Stasicka Z (2000) Chromium occurrence in the environment and methods of its speciation. Environ Pollut 107:263–283

    Article  PubMed  Google Scholar 

  • Kumar V, Parihar RD, Sharma A, Bakshi P, Sidhu GPS, Bali AS, Karaouzas I, Bhardwaj R, Thukral AK, Gyasi-Agyei Y, Rodrigo-Comino J (2019a) Global evaluation of heavy metal content in surface water bodies: a meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.124364

    Article  PubMed  Google Scholar 

  • Kumar V, Sharma A, Kaur P, Sidhu GPS, Bali AS, Bhardwaj R, Thukral AK, Cerda A (2019b) Pollution assessment of heavy metals in soils of India and ecological risk assessment: a State-of-the-Art. Chemosphere. https://doi.org/10.1016/j.chemosphere.2018.10.066

    Article  PubMed  Google Scholar 

  • Kumar V, Pandita S, Sidhu GPS, Sharma A, Khanna K, Kaur P, Bali AS, Setia R (2020) Copper bioavailability, uptake, toxicity and tolerance in plants: a comprehensive review. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.127810

    Article  PubMed  PubMed Central  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In: Packer L, Douce R (eds) Methods in Enzymology, vol 148. Academic Press, London, pp 350–382

    Google Scholar 

  • Mahey S, Kumar R, Sharma M, Kumar V, Bhardwaj R (2020) A critical review on toxicity of cobalt and its bioremediation strategies. SN Appl Sci. https://doi.org/10.1007/s42452-020-3020-9

    Article  Google Scholar 

  • Mani D, Kumar C, Patel NK (2015) Hyperaccumulator oilcake manure as an alternative for chelate-induced phytoremediation of heavy metals contaminated alluvial soils. Int J Phytoremed 17:256–263

    Article  Google Scholar 

  • Meers E, Hopgood M, Lesage E, Vervaeke P, Tack FMG, Verloo MG (2004) Enhanced phytoextraction: in search of EDTA alternatives. Int J Phytoremed 6:95–109

    Article  CAS  Google Scholar 

  • Meers E, Tack FM, Van Slycken S, Ruttens A, Du Laing G, Vangronsveld J, Verloo MG (2008) Chemically assisted phytoextraction: a review of potential soil amendments for increasing plant uptake of heavy metals. Int J Phytoremed 10(5):390–414

    Article  CAS  Google Scholar 

  • Morel JL (1997) Bioavailability of trace elements to terrestrial plants. In: Tarradellas J, Bitton G, Rossel D (eds) Soil ecotoxicology. Lewis Publishers, Boca Raton, pp 141–176

    Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Panda SK, Choudhury S (2005) Chromium stress in plants. Braz J Plant Physiol 17:95–102

    Article  CAS  Google Scholar 

  • Pandey V, Dixit V, Shyam R (2005) Antioxidative responses in relation to growth of mustard (Brassica juncea cv. Pusa Jaikisan) plants exposed to hexavalent chromium. Chemosphere 61:40–47

    Article  CAS  PubMed  Google Scholar 

  • Pütter J (1974) Peroxidase. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 2, 2nd edn. Verlag Chemie, Weinhan, pp 685–690

    Chapter  Google Scholar 

  • Robinson BH (1997) The phytoextraction of heavy metals from metalliferous soils. (Dissertation). Massey University, New Zealand

  • Rucinska-Sobkowiak R, Pukacki PM (2006) Antioxidative defense systemin lupin roots exposed to increasing concentrations of lead. Acta Physiol Plant 28:357–364

    Article  CAS  Google Scholar 

  • Scoccianti V, Iacobucci M, Paoletti MF, Fraternale A, Speranza A (2008) Species-dependent chromium accumulation, lipid peroxidation, and glutathione levels in germinating kiwifruit pollen under Cr(III) and Cr(VI) stress. Chemosphere 73:1042–1048

    Article  CAS  PubMed  Google Scholar 

  • Shanker AK (2003) Physiological, biochemical and molecular aspects of chromium toxicity and tolerance in selected crops and tree species. Ph.D. Thesis, Tamil Nadu Agricultural University, Coimbatore, India

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    Article  CAS  PubMed  Google Scholar 

  • Sharma I, Pati PK, Bhardwaj R (2011) Effect of 28-homobrassinolide on antioxidant defence system in Raphanus sativus L. under chromium toxicity. Ecotoxicology 20:862–874

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Kumar V, Bhardwaj R, Thukral AK (2019) Tartaric acid mediated Cr hyperaccumulation and biochemical alterations in seedlings of Hordeum vulgare L. J Plant Growth Reg 28:1–4

    Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry: the principles and practice of statistics in biological research. W. H. Freeman and Company, San Francisco

    Google Scholar 

  • Sonia Kumar R, Kumar R, Sharma M, Sharma R, Bhardwaj R, Thukral AK (2019) Maleic Acid and EDTA mediated extenuation of Co(II) stress in Hordeum vulgare seedlings. Biotechnol Res Innov. https://doi.org/10.1016/j.biori.2019.07.002

    Article  Google Scholar 

  • Stambulska UY, Bayliak MM, Lushchak VI (2018) Chromium (VI) toxicity in legume plants: modulation effects of rhizobial symbiosis. Biomed Res Int 2018:1–13

    Article  CAS  Google Scholar 

  • Statskingdom.com (2019) Shapiro–Wilk test calculator. http://www.statskingdom.com/320ShapiroWilk.html. Accessed 15 Feb 2018

  • Strangroom J (2018) Social Science Statistics. P-value from F-ratio calculator (ANOVA). https://www.socscistatistics.com/pvalues/fdistribution.aspx. Accessed 2 March 2018

  • Subrahmanyam D (2008) Effects of chromium toxicity on leaf photosynthetic characteristic characteristics and oxidative changes in wheat (Triticum aestivum L.). Photosynthetica 46(3):339–345

    Article  CAS  Google Scholar 

  • Taguchi YH, Oono Y (2004) Relational patterns of gene expression via non-metric multidimensional scaling analysis. Bioinformatics 21(6):730–740

    Article  PubMed  Google Scholar 

  • Vajpayee P, Tripathi RD, Rai UN, Ali MB, Singh SN (2000) Chromium (VI) accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nymphaea alba L. Chemosphere 41(7):1075–1082

    Article  CAS  PubMed  Google Scholar 

  • WebMD (2019) EDTA. https://www.webmd.com/vitamins/ai/ingredientmono-1032/edta. Accessed 15 March 2018

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Isrn Ecol 2011:1–20

    Article  Google Scholar 

  • Yu XZ, Gu JD (2008) The role of EDTA in phytoextraction of hexavalent and trivalent chromium by two willow trees. Ecotoxicology 17(3):143–152

    Article  CAS  PubMed  Google Scholar 

  • Zou JH, Wang M, Jiang WS, Liu DH (2006) Effects of hexavalent chromium (VI) on root growth and cell division in root tip cells of Amaranthus viridis L. Pak J Bot 38(3):673

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the University Grants Commission, Government of India for providing financial assistance in the form of the major research project “F.No.34-79/2008 (SR)” and UGC-BSR fellowship to MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod Kumar.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M., Kumar, V., Mahey, S. et al. Antagonistic effects of EDTA against biochemical toxicity induced by Cr(VI) in Hordeum vulgare L. seedlings. Physiol Mol Biol Plants 26, 2487–2502 (2020). https://doi.org/10.1007/s12298-020-00908-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-020-00908-w

Keywords

Navigation