Skip to main content
Log in

A truly self-starting implicit family of integration algorithms with dissipation control for nonlinear dynamics

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a novel implicit family of composite two sub-step algorithms with controllable dissipations is developed to effectively solve nonlinear structural dynamic problems. The primary superiority of the present method over other existing integration methods lies that it is truly self-starting and so the computation of initial acceleration vector is avoided, but the second-order accurate acceleration responses can be provided. Besides, the present method also achieves other desired numerical characteristics, such as the second-order accuracy of three primary variables, unconditional stability and no overshoots. Particularly, the novel method achieves adjustable numerical dissipations in the low and high frequency by controlling its two algorithmic parameters (\( \gamma \) and \( \rho _{\infty }\)). The classical dissipative parameter \( \rho _{\infty }\) determines numerical dissipations in the high-frequency while \( \gamma \) adjusts numerical dissipations in the low-frequency. Linear and nonlinear numerical examples are given to show the superiority of the novel method over existing integration methods with respect to accuracy and overshoot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

References

  1. Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Publications, Dover Civil and Mechanical Engineering, Dover (2000)

    MATH  Google Scholar 

  2. Bathe, K.J.: Finite Element Procedures, 2nd edn. Prentice-Hall, Englewood Cliffs (2014)

    MATH  Google Scholar 

  3. Butcher, J.C.: The Numerical Analysis of Ordinary Differential Equations: Runge–Kutta and General Linear Methods. John Wiley and Sons, New Jersey (1987)

    MATH  Google Scholar 

  4. Newmark, N.M.: A method of computation for structural dynamics. J. Eng. Mech. Div. 85(3), 67–94 (1959)

    Google Scholar 

  5. Wilson, E.L., Farhoomand, I., Bathe, K.J.: Nonlinear dynamic analysis of complex structures. Earthq. Eng. Struct. Dyn. 1(3), 241–252 (1972)

    Google Scholar 

  6. Park, K.C.: An improved stiffly stable method for direct integration of nonlinear structural dynamic equations. J. Appl. Mech. 42(2), 464–470 (1975)

    MathSciNet  MATH  Google Scholar 

  7. Har, J., Tamma, K.K.: Advances in Computational Dynamics of Particles, Materials and Structures. Wiley, New York (2012)

    MATH  Google Scholar 

  8. Shao, H., Cai, C.: A three parameters algorithm for numerical integration of structural dynamic equations. Chin. J. Appl. Mech. 5(4), 76–81 (1988)

    Google Scholar 

  9. Chung, J., Hulbert, G.M.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J. Appl. Mech. 60(2), 371–375 (1993)

    MathSciNet  MATH  Google Scholar 

  10. Dokainish, M.A., Subbaraj, K.: A survey of direct time-integration methods in computational structural dynamics-I. explicit methods. Comput. Struct. 32(6), 1371–1386 (1989)

    MathSciNet  MATH  Google Scholar 

  11. Subbaraj, K., Dokainish, M.A.: A survey of direct time-integration methods in computational structural dynamics-II. implicit methods. Comput. Struct. 32(6), 1387–1401 (1989)

    MathSciNet  MATH  Google Scholar 

  12. de Borst, R., Crisfield, M.A., et al.: Non-Linear Finite Element Analysis of Solids and Structures. Wiley Series in Computational Mechanics. Wiley, New York (2012)

    MATH  Google Scholar 

  13. Wood, W., Bossak, M., Zienkiewicz, O.: An alpha modification of Newmark’s method. Int. J. Numer. Methods Eng. 15(10), 1562–1566 (1980)

    MathSciNet  MATH  Google Scholar 

  14. Hilber, H.M., Hughes, T.J.R., Taylor, R.L.: Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq. Eng. Struct. Dyn. 5(3), 283–292 (1977)

    Google Scholar 

  15. Shimada, M., Masuri, S., Tamma, K.K.: A novel design of an isochronous integration [iIntegration] framework for first/second order multidisciplinary transient systems. Int. J. Numer. Methods Eng. 102(3–4), 867–891 (2015)

    MATH  Google Scholar 

  16. Hulbert, G.M., Hughes, T.J.R.: An error analysis of truncated starting conditions in step-by-step time integration: consequences for structural dynamics. Earthq. Eng. Struct. Dyn. 15(7), 901–910 (1987)

    Google Scholar 

  17. Shimada, M., Hoitink, A., Tamma, K.K.: The fundamentals underlying the computations of acceleration for general dynamic applications: issues and noteworthy perspectives. CMES Comput. Model. Eng. Sci. 104(2), 133–158 (2015)

    Google Scholar 

  18. Benítez, J.M., Montáns, F.J.: The value of numerical amplification matrices in time integration methods. Comput. Struct. 128(5), 243–250 (2013)

    Google Scholar 

  19. Namburu, R.R., Tamma, K.K.: A generalized \(\gamma _s\)-family of self-starting algorithms for computational structural dynamics. In: AIAA Journal (1992)

  20. Soares Jr., D.: A simple and effective new family of time marching procedures for dynamics. Comput. Methods Appl. Mech. Eng. 283, 1138–1166 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Soares, D.: An implicit family of time marching procedures with adaptive dissipation control. Appl. Math. Modell. 40(4), 3325–3341 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Soares Jr., D.: A simple and effective single-step time marching technique based on adaptive time integrators. Int. J. Numer. Methods Eng. 109, 1344–1368 (2016)

    MathSciNet  Google Scholar 

  23. Soares Jr., D.: A model/solution-adaptive explicit-implicit time marching technique for wave propagation analysis. Int. J. Numer. Methods Eng. 119, 590–617 (2019)

    MathSciNet  Google Scholar 

  24. Bathe, K.J., Baig, M.M.I.: On a composite implicit time integration procedure for nonlinear dynamics. Comput. Struct. 83(31–32), 2513–2524 (2005)

    MathSciNet  Google Scholar 

  25. Bathe, K.J.: Conserving energy and momentum in nonlinear dynamics: A simple implicit time integration scheme. Computers & Structures 85(7–8), 437–445 (2007)

    MathSciNet  Google Scholar 

  26. Li, J., Yu, K.: An alternative to the Bathe algorithm. Appl. Math. Modell. 69, 255–272 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Dong, S.: BDF-like methods for nonlinear dynamic analysis. J. Comput. Phys. 229(8), 3019–3045 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Li, J., Yu, K.: A novel family of composite sub-step algorithms with desired numerical dissipations for structural dynamics. Arch. Appl. Mech. 90, 737–772 (2019)

    Google Scholar 

  29. Malakiyeh, M.M., Shojaee, S., Bathe, K.J.: The Bathe time integration method revisited for prescribing desired numerical dissipation. Comput. Struct. 212, 289–298 (2019)

    Google Scholar 

  30. Noh, G., Bathe, K.J.: The Bathe time integration method with controllable spectral radius: the \(\rho _\infty \)-Bathe method. Comput. Struct. 212, 299–310 (2019)

    Google Scholar 

  31. Li, J., Li, X., Yu, K.: Enhanced studies on the composite sub-step algorithm for structural dynamics: the Bathe-like algorithm. Appl. Math. Modell. 80, 33–64 (2020)

    MathSciNet  MATH  Google Scholar 

  32. Noh, G., Ham, S., Bathe, K.J.: Performance of an implicit time integration scheme in the analysis of wave propagations. Comput. Struct. 123, 93–105 (2013)

    Google Scholar 

  33. Li, J., Yu, K., Li, X.: A novel family of controllably dissipative composite integration algorithms for structural dynamic analysis. Nonlinear Dyn. 96(4), 2475–2507 (2019)

    Google Scholar 

  34. Chang, S.Y.: Dissipative, noniterative integration algorithms with unconditional stability for mildly nonlinear structural dynamic problems. Nonlinear Dyn. 79(2), 1625–1649 (2015)

    Google Scholar 

  35. Hilber, H.M., Hughes, T.J.R.: Collocation, dissipation and ‘overshoot’ for time integration schemes in structural dynamics. Earthq. Eng. Struct. Dyn. 6(1), 99–117 (1978)

    Google Scholar 

  36. Zhou, X., Tamma, K.K.: Design, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamics. Int. J. Numer. Methods Eng. 59(5), 597–668 (2004)

    MathSciNet  MATH  Google Scholar 

  37. Li, J., Yu, K.: Noniterative integration algorithms with controllable numerical dissipations for structural dynamics. Int. J. Comput. Methods 15(3), 1850111 (2018)

    MathSciNet  MATH  Google Scholar 

  38. Zhang, H.M., Xing, Y.F.: Optimization of a class of composite method for structural dynamics. Comput. Struct. 202, 60–73 (2018)

    Google Scholar 

  39. Noh, G., Bathe, K.J.: For direct time integrations: a comparison of the Newmark and \(\rho _\infty \)-Bathe schemes. Comput. Struct. 225, 106079 (2019)

    Google Scholar 

  40. Li, J., Yu, K., He, H.: A second-order accurate three sub-step composite algorithm for structural dynamics. Appl. Math. Modell. 77, 1391–1412 (2020)

    MathSciNet  MATH  Google Scholar 

  41. Wood, W.L., Oduor, M.E.: Stability properties of some algorithms for the solution of nonlinear dynamic vibration equations. Commun. Appl. Numer. Methods 4(2), 205–212 (1988)

    MATH  Google Scholar 

  42. Nickell, R.: Nonlinear dynamics by mode superposition. Comput. Methods Appl. Mech. Eng. 7(1), 107–129 (1976)

    MathSciNet  MATH  Google Scholar 

  43. Fernandes, W.L., Vasconcellos, D.B., Greco, M.: Dynamic instability in shallow arches under transversal forces and plane frames with semirigid connections. Math. Probl. Eng. 2018, 1–14 (2018). https://doi.org/10.1155/2018/1985907

    Article  MathSciNet  MATH  Google Scholar 

  44. He, H., Tang, H., Yu, K., Li, J., Yang, N., Zhang, X.: Nonlinear aeroelastic analysis of the folding fin with freeplay under thermal environment. Chin. J. Aeronaut. 33(9), 2357–2371 (2020)

    Google Scholar 

  45. Chung, J., Lee, J.M.: A new family of explicit time integration methods for linear and non-linear structural dynamics. Int. J. Numer. Methods Eng. 37(23), 3961–3976 (1994)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 11372084). The helpful and constructive comments by the referees have led to the improvements of this paper; the authors gratefully acknowledge this assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaiping Yu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yu, K. A truly self-starting implicit family of integration algorithms with dissipation control for nonlinear dynamics. Nonlinear Dyn 102, 2503–2530 (2020). https://doi.org/10.1007/s11071-020-06101-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06101-8

Keywords

Navigation