Skip to main content

Advertisement

Log in

Indazole scaffold: a generalist for marketed and clinical drugs

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

More and more attention has been paid to the structurally diverse indazole analogs in recent years which are widely present in numerous commercially available drugs. Indazole-containing derivatives are endowed with a broad range of biological properties, such as anti-inflammatory, antibacterial, anti-HIV, antiarrhythmics, antifungal and antitumor activities. This review is a guide for pharmacologists who are in search of valid preclinical/clinical drug compounds where the progress, from 1966 to the present day, of approved marketed drugs containing indazole scaffold is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ali NA, Dar BA, Pradhan V, Farooqui M. Chemistry and biology of indoles and indazoles: a mini-review. Mini Rev Med Chem. 2013;13:1792–800. https://doi.org/10.2174/1389557511313120009

    Article  CAS  PubMed  Google Scholar 

  2. Kuhn PS, Buchel GE, Jovanovic KK, Filipovic L, Radulovic S, Rapta P, et al. Osmium(III) analogues of KP1019: electrochemical and chemical synthesis, spectroscopic characterization, X-ray crystallography, hydrolytic stability, and antiproliferative activity. Inorg Chem. 2014;53:11130–9. https://doi.org/10.1021/ic501710k

    Article  CAS  PubMed  Google Scholar 

  3. Cheekavolu C, Muniappan M. In vivo and in vitro anti-inflammatory activity of indazole and its derivatives. J Clin Diagn Res. 2016;10:FF01–6. https://doi.org/10.7860/JCDR/2016/19338.8465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lopez-Vallejo F, Castillo R, Yepez-Mulia L, Medina-Franco JL. Benzotriazoles and indazoles are scaffolds with biological activity against Entamoeba histolytica. J Biomol Screen. 2011;16:862–8. https://doi.org/10.1177/1087057111414902

    Article  CAS  PubMed  Google Scholar 

  5. Tzvetkov NT, Hinz S, Kuppers P, Gastreich M, Muller CE. Indazole- and indole-5-carboxamides: selective and reversible monoamine oxidase B inhibitors with subnanomolar potency. J Med Chem. 2014;57:6679–703. https://doi.org/10.1021/jm500729a

    Article  CAS  PubMed  Google Scholar 

  6. Denya I, Malan SF, Joubert J. Indazole derivatives and their therapeutic applications: a patent review (2013–2017). Exp Opin Ther Pat. 2018;28:441–53. https://doi.org/10.1080/13543776.2018.1472240

    Article  CAS  Google Scholar 

  7. Dong J, Zhang Q, Wang Z, Huang G, Li S. Recent advances in the development of indazole-based anticancer agents. ChemMedChem. 2018;13:1490–507. https://doi.org/10.1002/cmdc.201800253

    Article  CAS  PubMed  Google Scholar 

  8. Bellesoeur A, Carton E, Alexandre J, Goldwasser F, Huillard O. Axitinib in the treatment of renal cell carcinoma: design, development, and place in therapy. Drug Des Dev Ther. 2017;11:2801–11. https://doi.org/10.2147/DDDT.S109640

    Article  CAS  Google Scholar 

  9. Keating GM. Axitinib: a review in advanced renal cell carcinoma. Drugs. 2015;75:1903–13. https://doi.org/10.1007/s40265-015-0483-x

    Article  CAS  PubMed  Google Scholar 

  10. Kelly RJ, Rixe O. Axitinib (AG-013736). Recent Results Cancer Res. 2010;184:33–44. https://doi.org/10.1007/978-3-642-01222-8_3

    Article  CAS  PubMed  Google Scholar 

  11. Kusakabe N, Osawa T, Miyata H, Kikuchi H, Matsumoto R, Maruyama S. et al. Treatment outcome of axitinib for metastatic renal-cell carcinoma patients. Hinyokika Kiyo. 2018;64:353–8. 10.14989/ActaUrolJap_64_9_353.

    PubMed  Google Scholar 

  12. Yoshida K, Takagi T, Kondo T, Kobayashi H, Iizuka J, Fukuda H, et al. Efficacy of axitinib in patients with metastatic renal cell carcinoma refractory to nivolumab therapy. Jpn J Clin Oncol. 2019;49:576–80. https://doi.org/10.1093/jjco/hyz040

    Article  PubMed  Google Scholar 

  13. Igarashi R, Inoue T, Fujiyama N, Tsuchiya N, Numakura K, Kagaya H, et al. Contribution of UGT1A1 genetic polymorphisms related to axitinib pharmacokinetics to safety and efficacy in patients with renal cell carcinoma. Med Oncol. 2018;35:51 https://doi.org/10.1007/s12032-018-1113-8

    Article  CAS  PubMed  Google Scholar 

  14. Sharma S, Abhyankar V, Burgess RE, Infante J, Trowbridge RC, Tarazi J, et al. A phase I study of axitinib (AG-013736) in combination with bevacizumab plus chemotherapy or chemotherapy alone in patients with metastatic colorectal cancer and other solid tumors. Ann Oncol. 2010;21:297–304. https://doi.org/10.1093/annonc/mdp489

    Article  CAS  PubMed  Google Scholar 

  15. Tortorici MA, Toh M, Rahavendran SV, Labadie RR, Alvey CW, Marbury T, et al. Influence of mild and moderate hepatic impairment on axitinib pharmacokinetics. Investig N Drugs. 2011;29:1370–80. https://doi.org/10.1007/s10637-010-9477-4

    Article  CAS  Google Scholar 

  16. Zhang LL, Wang HA, Li W, Zhong JC, Yu RC, Huang XF, et al. Pazopanib, a novel multi-kinase inhibitor, shows potent antitumor activity in colon cancer through PUMA-mediated apoptosis. Oncotarget. 2017;8:3289–303. https://doi.org/10.18632/oncotarget.13753

    Article  PubMed  Google Scholar 

  17. Chamberlain FE, Wilding C, Jones RL, Huang P. Pazopanib in patients with advanced intermediate-grade or high-grade liposarcoma. Exp Opin Investig Drugs. 2019;28:505–11. https://doi.org/10.1080/13543784.2019.1607291

    Article  CAS  Google Scholar 

  18. Deeks ED. Pazopanib: in advanced soft tissue sarcoma. Drugs. 2012;72:2129–40. https://doi.org/10.2165/11209950-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  19. Keisner SV, Shah SR. Pazopanib: the newest tyrosine kinase inhibitor for the treatment of advanced or metastatic renal cell carcinoma. Drugs. 2011;71:443–54. https://doi.org/10.2165/11588960-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  20. Koc G, Wang X, Luo Y. Pazopanib: an orally administered multi-targeted tyrosine kinase inhibitor for locally advanced or metastatic renal cell carcinoma. Can J Urol. 2011;18:5991–7.

    PubMed  Google Scholar 

  21. LaPlant KD, Louzon PD. Pazopanib: an oral multitargeted tyrosine kinase inhibitor for use in renal cell carcinoma. Ann Pharmacother. 2010;44:1054–60. https://doi.org/10.1345/aph.1M251

    Article  CAS  PubMed  Google Scholar 

  22. Ranieri G, Mammi M, Donato Di Paola E, Russo E, Gallelli L, Citraro R, et al. Pazopanib a tyrosine kinase inhibitor with strong anti-angiogenetic activity: a new treatment for metastatic soft tissue sarcoma. Crit Rev Oncol Hematol. 2014;89:322–9. https://doi.org/10.1016/j.critrevonc.2013.08.012

    Article  PubMed  Google Scholar 

  23. Sanford M, Keating GM. Pazopanib: in advanced renal cell carcinoma. BioDrugs. 2010;24:279–86. https://doi.org/10.2165/11205480-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  24. Zhou J, Goh BC, Albert DH, Chen CS. ABT-869, a promising multi-targeted tyrosine kinase inhibitor: from bench to bedside. J Hematol Oncol. 2009;2:33. https://doi.org/10.1186/1756-8722-2-33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cainap C, Qin S, Huang WT, Chung IJ, Pan H, Cheng Y, et al. Linifanib versus Sorafenib in patients with advanced hepatocellular carcinoma: results of a randomized phase III trial. J Clin Oncol. 2015;33:172–9. https://doi.org/10.1200/JCO.2013.54.3298

    Article  CAS  PubMed  Google Scholar 

  26. Hu H, Mu Q, Bao Z, Chen Y, Liu Y, Chen J, et al. Mutational landscape of secondary glioblastoma guides MET-targeted trial in brain tumor. Cell 2018;175:1665–78. e1618. https://doi.org/10.1016/j.cell.2018.09.038

    Article  CAS  PubMed  Google Scholar 

  27. Robichaux JP, Elamin YY, Tan Z, Carter BW, Zhang S, Liu S, et al. Mechanisms and clinical activity of an EGFR and HER2 exon 20-selective kinase inhibitor in non-small cell lung cancer. Nat Med. 2018;24:638–46. https://doi.org/10.1038/s41591-018-0007-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu D, Offin M, Harnicar S, Li BT, Drilon A. Entrectinib: an orally available, selective tyrosine kinase inhibitor for the treatment of NTRK, ROS1, and ALK fusion-positive solid tumors. Ther Clin Risk Manag. 2018;14:1247–52. https://doi.org/10.2147/TCRM.S147381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yan SB, Peek VL, Ajamie R, Buchanan SG, Graff JR, Heidler SA, et al. LY2801653 is an orally bioavailable multi-kinase inhibitor with potent activity against MET, MST1R, and other oncoproteins, and displays anti-tumor activities in mouse xenograft models. Invest N Drugs. 2013;31:833–44. https://doi.org/10.1007/s10637-012-9912-9

    Article  CAS  Google Scholar 

  30. Banerjee T, Aggarwal M, Sommers JA, Brosh RM Jr. Biochemical and cell biological assays to identify and characterize DNA helicase inhibitors. Methods. 2016;108:130–41. https://doi.org/10.1016/j.ymeth.2016.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu W, Bi C, Credille KM, Manro JR, Peek VL, Donoho GP, et al. Inhibition of tumor growth and metastasis in non-small cell lung cancer by LY2801653, an inhibitor of several oncokinases, including MET. Clin Cancer Res. 2013;19:5699–710. https://doi.org/10.1158/1078-0432.CCR-13-1758

    Article  CAS  PubMed  Google Scholar 

  32. He AR, Cohen RB, Denlinger CS, Sama A, Birnbaum A, Hwang J et al. First-in-human phase i study of merestinib, an oral multikinase inhibitor, in patients with advanced cancer. Oncologist. 2019. https://doi.org/10.1634/theoncologist.2018-0411.

  33. Addelman M, Erlichman C, Fine S, Warr D, Murray C. Phase I/II trial of granisetron: a novel 5-hydroxytryptamine antagonist for the prevention of chemotherapy-induced nausea and vomiting. J Clin Oncol. 1990;8:337–41. https://doi.org/10.1200/JCO.1990.8.2.337

    Article  CAS  PubMed  Google Scholar 

  34. Allen A, Asgill CC, Pierce DM, Upward J, Zussman BD. Pharmacokinetics and tolerability of ascending intravenous doses of granisetron, a novel 5-HT3 antagonist, in healthy human subjects. Eur J Clin Pharm. 1994;46:159–62.

    Article  CAS  Google Scholar 

  35. Buchanan D, Muirhead K. Intractable nausea and vomiting successfully related with granisetron 5-hydroxytryptamine type 3 receptor antagonists in Palliative Medicine. Palliat Med. 2007;21:725–6. https://doi.org/10.1177/0269216307083383

    Article  PubMed  Google Scholar 

  36. Joss RA, Dott CS. Clinical studies with granisetron, a new 5-HT3 receptor antagonist for the treatment of cancer chemotherapy-induced emesis. The Granisetron Study Group. Eur J Cancer. 1993;29A:S22–9. https://doi.org/10.1016/s0959-8049(05)80256-4

    Article  PubMed  Google Scholar 

  37. Upward JW, Arnold BD, Link C, Pierce DM, Allen A, Tasker TC. The clinical pharmacology of granisetron (BRL 43694), a novel specific 5-HT3 antagonist. Eur J Cancer. 1990;26:S12–5.

    CAS  PubMed  Google Scholar 

  38. Yarker YE, McTavish D. Granisetron. An update of its therapeutic use in nausea and vomiting induced by antineoplastic therapy. Drugs. 1994;48:761–93. https://doi.org/10.2165/00003495-199448050-00008

    Article  CAS  PubMed  Google Scholar 

  39. Boccia RV, Gordan LN, Clark G, Howell JD, Grunberg SM, Sancuso Study G. Efficacy and tolerability of transdermal granisetron for the control of chemotherapy-induced nausea and vomiting associated with moderately and highly emetogenic multi-day chemotherapy: a randomized, double-blind, phase III study. Support Care Cancer. 2011;19:1609–17. https://doi.org/10.1007/s00520-010-0990-y

    Article  PubMed  Google Scholar 

  40. Duggan ST, Curran MP. Transdermal granisetron. Drugs. 2009;69:2597–605. https://doi.org/10.2165/11202780-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  41. Schulmeister L. Granisetron transdermal system: a new option to help prevent chemotherapy-induced nausea and vomiting. Clin J Oncol Nurs. 2009;13:711–4. https://doi.org/10.1188/09.CJON.711-4

    Article  PubMed  Google Scholar 

  42. Tuca A. Use of granisetron transdermal system in the prevention of chemotherapy-induced nausea and vomiting: a review. Cancer Manag Res. 2009;2:1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Iritani E, Isono K, Izumo T, Takeda N, Kanemura T, Tamaoki J. et al.The efficacy of indisetron hydrochloride for the management of chemotherapy-induced nausea and vomiting for lung cancer.Gan To Kagaku Ryoho. 2009;36:1486–92.

    Google Scholar 

  44. Mule F. Indisetron Kyorin. IDrugs. 2002;5:278–80.

    CAS  PubMed  Google Scholar 

  45. Ushijima K, Wake N, Kobayashi H, Hachisuga T, Toki N, Masuzaki H, et al. The efficacy and safety of indisetron hydrochloride for the management of nausea/vomiting caused by chemotherapy for gynecologic cancer. Gan Kagaku Ryoho. 2008;35:1169–73.

    Google Scholar 

  46. Tsukagoshi S.Tokyo Cooperative Oncology Group Introduction of novel anti-emetic agent, indisetron hydrochloride, developed recently in Japan.Gan To Kagaku Ryoho. 2005;32:567–73.

    PubMed  Google Scholar 

  47. Ardini E, Menichincheri M, Banfi P, Bosotti R, De Ponti C, Pulci R, et al. Entrectinib, a Pan-TRK, ROS1, and ALK inhibitor with activity in multiple molecularly defined cancer indications. Mol Cancer Ther. 2016;15:628–39. https://doi.org/10.1158/1535-7163.MCT-15-0758

    Article  CAS  PubMed  Google Scholar 

  48. Rolfo C, Ruiz R, Giovannetti E, Gil-Bazo I, Russo A, Passiglia F, et al. Entrectinib: a potent new TRK, ROS1, and ALK inhibitor. Exp Opin Investig Drugs. 2015;24:1493–500. https://doi.org/10.1517/13543784.2015.1096344

    Article  CAS  Google Scholar 

  49. Smith KM, Fagan PC, Pomari E, Germano G, Frasson C, Walsh C, et al. Antitumor activity of entrectinib, a Pan-TRK, ROS1, and ALK inhibitor, in ETV6-NTRK3-positive acute myeloid leukemia. Mol Cancer Ther. 2018;17:455–63. https://doi.org/10.1158/1535-7163.MCT-17-0419

    Article  CAS  PubMed  Google Scholar 

  50. Pacenta HL, Macy ME. Entrectinib and other ALK/TRK inhibitors for the treatment of neuroblastoma. Drug Des Devel Ther. 2018;12:3549–61. https://doi.org/10.2147/DDDT.S147384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Menichincheri M, Ardini E, Magnaghi P, Avanzi N, Banfi P, Bossi R, et al. Discovery of entrectinib: a new 3-aminoindazole as a potent anaplastic lymphoma kinase (ALK), c-ros oncogene 1 kinase (ROS1), and pan-tropomyosin receptor kinases (Pan-TRKs) inhibitor. J Med Chem. 2016;59:3392–408. https://doi.org/10.1021/acs.jmedchem.6b00064

    Article  CAS  PubMed  Google Scholar 

  52. Drilon A, Siena S, Ou SI, Patel M, Ahn MJ, Lee J, et al. Safety and antitumor activity of the multitargeted pan-TRK, ROS1, and ALK inhibitor entrectinib: combined results from two phase i trials (ALKA-372-001 and STARTRK-1). Cancer Discov. 2017;7:400–9. https://doi.org/10.1158/2159-8290.CD-16-1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Awan FT, Thirman MJ, Patel-Donnelly D, Assouline S, Rao AV, Ye W, et al. Entospletinib monotherapy in patients with relapsed or refractory chronic lymphocytic leukemia previously treated with B-cell receptor inhibitors: results of a phase 2 study. Leuk Lymphoma. 2019;60:1972–7. https://doi.org/10.1080/10428194.2018.1562180

    Article  CAS  PubMed  Google Scholar 

  54. Burke RT, Meadows S, Loriaux MM, Currie KS, Mitchell SA, Maciejewski P, et al. A potential therapeutic strategy for chronic lymphocytic leukemia by combining Idelalisib and GS-9973, a novel spleen tyrosine kinase (Syk) inhibitor. Oncotarget. 2014;5:908–15. https://doi.org/10.18632/oncotarget.1484

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sharman J, Di Paolo J. Targeting B-cell receptor signaling kinases in chronic lymphocytic leukemia: the promise of entospletinib. Ther Adv Hematol. 2016;7:157–70. https://doi.org/10.1177/2040620716636542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sharman J, Hawkins M, Kolibaba K, Boxer M, Klein L, Wu M, et al. An open-label phase 2 trial of entospletinib (GS-9973), a selective spleen tyrosine kinase inhibitor, in chronic lymphocytic leukemia. Blood. 2015;125:2336–43. https://doi.org/10.1182/blood-2014-08-595934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Burke JM, Shustov A, Essell J, Patel-Donnelly D, Yang J, Chen R, et al. An open-label, phase II trial of entospletinib (GS-9973), a selective spleen tyrosine kinase inhibitor, in diffuse large B-cell lymphoma. Clin Lymphoma Myeloma Leuk. 2018;18:e327–31. https://doi.org/10.1016/j.clml.2018.05.022

    Article  PubMed  PubMed Central  Google Scholar 

  58. Liu D, Mamorska-Dyga A. Syk inhibitors in clinical development for hematological malignancies. J Hematol Oncol. 2017;10:145 https://doi.org/10.1186/s13045-017-0512-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Andorsky DJ, Kolibaba KS, Assouline S, Forero-Torres A, Jones V, Klein LM, et al. An open-label phase 2 trial of entospletinib in indolent non-Hodgkin lymphoma and mantle cell lymphoma. Br J Haematol. 2019;184:215–22. https://doi.org/10.1111/bjh.15552

    Article  CAS  PubMed  Google Scholar 

  60. Currie KS, Kropf JE, Lee T, Blomgren P, Xu J, Zhao Z, et al. Discovery of GS-9973, a selective and orally efficacious inhibitor of spleen tyrosine kinase. J Med Chem. 2014;57:3856–73. https://doi.org/10.1021/jm500228a

    Article  CAS  PubMed  Google Scholar 

  61. Ramanathan S, Di Paolo JA, Jin F, Shao L, Sharma S, Robeson M, et al. Pharmacokinetics, pharmacodynamics, and safety of entospletinib, a novel psyk inhibitor, following single and multiple oral dosing in healthy volunteers. Clin Drug Investig. 2017;37:195–205. https://doi.org/10.1007/s40261-016-0476-x

    Article  CAS  PubMed  Google Scholar 

  62. Leteurtre F, Kohlhagen G, Paull KD, Pommier Y. Topoisomerase II inhibition and cytotoxicity of the anthrapyrazoles DuP 937 and DuP 941 (Losoxantrone) in the National Cancer Institute preclinical antitumor drug discovery screen. J Natl Cancer Inst. 1994;86:1239–44. https://doi.org/10.1093/jnci/86.16.1239

    Article  CAS  PubMed  Google Scholar 

  63. Capranico G, Palumbo M, Tinelli S, Mabilia M, Pozzan A, Zunino F. Conformational drug determinants of the sequence specificity of drug-stimulated topoisomerase II DNA cleavage. J Mol Biol. 1994;235:1218–30. https://doi.org/10.1006/jmbi.1994.1075

    Article  CAS  PubMed  Google Scholar 

  64. Renner UD, Piperopoulos G, Gebhardt R, Ehninger G, Zeller KP. The oxidative biotransformation of losoxantrone (CI-941). Drug Metab Dispos. 2002;30:464–78. https://doi.org/10.1124/dmd.30.4.464

    Article  CAS  PubMed  Google Scholar 

  65. Talbot DC, Smith IE, Mansi JL, Judson I, Calvert AH, Ashley SE. Anthrapyrazole CI941: a highly active new agent in the treatment of advanced breast cancer. J Clin Oncol. 1991;9:2141–7. https://doi.org/10.1200/JCO.1991.9.12.2141

    Article  CAS  PubMed  Google Scholar 

  66. Liang H, Wu X, Guziec LJ, Guziec FS Jr., Larson KK, Lang J, et al. A structure-based 3D-QSAR study of anthrapyrazole analogues of the anticancer agents losoxantrone and piroxantrone. J Chem Inform Model. 2006;46:1827–35. https://doi.org/10.1021/ci060056y

    Article  CAS  Google Scholar 

  67. Hantel A, Tangen C, Gluck WL, Macdonald JS. Phase II trial of piroxantrone in gastric carcinoma. A Southwest Oncology Group study. Investig N. Drugs. 1994;12:159–61.

    Article  CAS  Google Scholar 

  68. Ingle JN, Kuross SA, Mailliard JA, Loprinzi CL, Jung SH, Nelimark RA, et al. Evaluation of piroxantrone in women with metastatic breast cancer and failure on nonanthracycline chemotherapy. Cancer 1994;74:1733–8. 10.1002/1097-0142(19940915)74:6<1733::aid-cncr2820740615>3.0.co;2-d

    Article  CAS  PubMed  Google Scholar 

  69. Malviya VK, Liu PY, Goldberg DA, Hantel A, O’Toole RV, Roach RW, et al. A phase II trial of piroxantrone in endometrial cancer: Southwest Oncology Group study 8918. Anticancer Drugs. 1996;7:527–30.

    Article  CAS  PubMed  Google Scholar 

  70. Pazdur R, Bready B, Scalzo AJ, Brandof JE, Close DR, Kolbye S, et al. Phase II trial of piroxantrone in metastatic gastric adenocarcinoma. Investig N. Drugs. 1994;12:263–5.

    Article  CAS  Google Scholar 

  71. Ravdin PM, Green S, Doroshow JH, Martino S. Phase II trial of piroxantrone in metastatic breast cancer. A Southwest Oncology Group study. Investig N. Drugs. 1994;12:333–6.

    Article  CAS  Google Scholar 

  72. Sosman JA, Flaherty LE, Liu PY, Fletcher W, Thompson JA, Hantel A, et al. A phase II trial of piroxantrone in disseminated malignant melanoma. A Southwest Oncology Group study. Invest N. Drugs. 1995;13:83–7.

    Article  CAS  Google Scholar 

  73. Gregg RW, Kaizer L, Fine S, Gelmon K, Wielgosz G, Eisenhauer E. A phase II trial of DuP 937 (Teloxantrone) in non-small cell lung cancer. A study of the NCIC Clinical Trials Group. Ann Oncol. 1993;4:693–4. https://doi.org/10.1093/oxfordjournals.annonc.a058627

    Article  CAS  PubMed  Google Scholar 

  74. Maroun JA, Skillings J, MacCormick R, Potvin M, Wielgosz G, Davidson JR, et al. Phase II study on DuP 937 (Teloxantrone) in colorectal carcinoma. A Canadian National Cancer Institute Clinical Trial Group study. Investig N Drugs. 1993;11:235–7.

    Article  CAS  Google Scholar 

  75. Shore T, Eisenhauer E, Quirt I, Belanger K, Lohmann R, Silver H, et al. A phase II study of DuP 937 (Teloxantrone) in metastatic malignant melanoma: a study of the National Cancer Institute of Canada Clinical Trials Group (NCICCTG). Ann Oncol. 1993;4:695–6. https://doi.org/10.1093/oxfordjournals.annonc.a058628

    Article  CAS  PubMed  Google Scholar 

  76. Supino R, Polizzi D, Pavesi R, Pratesi G, Guano F, Capranico G, et al. A novel 9-aza-anthrapyrazole effective against human prostatic carcinoma xenografts. Oncology. 2001;61:234–42. https://doi.org/10.1159/000055380

    Article  CAS  PubMed  Google Scholar 

  77. Krapcho AP, Menta E, Oliva A, Di Domenico R, Fiocchi L, Maresch ME, et al. Synthesis and antitumor evaluation of 2,5-disubstituted-indazolo[4, 3-gh]isoquinolin-6(2H)-ones (9-aza-anthrapyrazoles). J Med Chem. 1998;41:5429–44. https://doi.org/10.1021/jm9804432

    Article  CAS  PubMed  Google Scholar 

  78. Hofheinz RD, Porta C, Hartung G, Santoro A, Hanauske AR, Kutz K, et al. BBR 3438, a novel 9-aza-anthrapyrazole, in patients with advanced gastric cancer: a phase II study group trial of the Central European Society of Anticancer-Drug Research (CESAR). Investig N. Drugs. 2005;23:363–8. https://doi.org/10.1007/s10637-005-1445-z

    Article  CAS  Google Scholar 

  79. Bastasch M, Panella TJ, Kretzschmer SL, Graham D, Mayo M, Williamson S. Phase II trial of pyrazoloacridine in advanced non-small cell carcinoma of the lung-a Kansas Cancer Institute and Thompson Cancer Survival Center Study. Investig N. Drugs. 2002;20:339–42.

    Article  CAS  Google Scholar 

  80. Plaxe SC, Blessing JA, Husseinzadeh N, Webster KD, Rader JS, Dunton CJ. Phase II trial of pyrazoloacridine in patients with persistent or recurrent endometrial carcinoma: a Gynecologic Oncology Group Study. Gynecol Oncol. 2002;84:241–4. https://doi.org/10.1006/gyno.2001.6491

    Article  CAS  PubMed  Google Scholar 

  81. Plaxe SC, Blessing JA, Olt G, Husseinzadah N, Lentz SS, DeGeest K, et al. A phase II trial of pyrazoloacridine (PZA) in squamous cell carcinoma of the cervix: a Gynecologic Oncology Group study. Cancer Chemother Pharm. 2002;50:151–4. https://doi.org/10.1007/s00280-002-0470-2

    Article  CAS  Google Scholar 

  82. Zalupski MM, Philip PA, LoRusso P, Shields AF. Phase II study of pyrazoloacridine in patients with advanced colorectal carcinoma. Cancer Chemother Pharm. 1997;40:225–7. https://doi.org/10.1007/s002800050650

    Article  CAS  Google Scholar 

  83. De Souza PL, North S, Bolger GB, Spiridonidis H, Lim R, Khoo KS, et al. A phase II trial of weekly i.v. KW-2170 in advanced castrate-resistant prostate cancer. Asia Pac J Clin Oncol. 2010;6:292–7. https://doi.org/10.1111/j.1743-7563.2010.01328.x

    Article  PubMed  Google Scholar 

  84. Hoff PM, Ellerton JA, Dakhil SR, Winn RJ, Abbruzzese JL, Pazdur R. Phase II study of intravenous CI-958 in metastatic colorectal adenocarcinoma. Am J Clin Oncol. 2000;23:602–4.

    Article  CAS  PubMed  Google Scholar 

  85. Shields AF, Philip PA, LoRusso PM, Ferris AM, Zalupski MM. Phase II study of CI-958 in colorectal cancer. Cancer Chemother Pharm. 1999;43:162–4. https://doi.org/10.1007/s002800050878

    Article  CAS  Google Scholar 

  86. Philip Kuebler J, Moore T, Pritchard J, Kraut E. Phase II study of CI-958 in patients with hormone refractory prostate carcinoma. Investig N Drugs. 2004;22:181–4. https://doi.org/10.1023/B:DRUG.0000011795.82694.80

    Article  CAS  Google Scholar 

  87. Woolley PV, Freiha FS, Smith DC, Carlson L, Hofacker J, Quinn N, et al. A phase II trial of CI-958 in patients with hormone-refractory prostate cancer. Cancer Chemother Pharm. 1999;44:511–7. https://doi.org/10.1007/s002800051126

    Article  CAS  Google Scholar 

  88. Essel KG, Moore KN. Niraparib for the treatment of ovarian cancer. Exp Rev Anticancer Ther. 2018;18:727–33. https://doi.org/10.1080/14737140.2018.1490180

    Article  CAS  Google Scholar 

  89. Ethier JL, Lheureux S, Oza AM. The role of niraparib for the treatment of ovarian cancer. Future Oncol. 2018;14:2565–77. https://doi.org/10.2217/fon-2018-0101

    Article  CAS  PubMed  Google Scholar 

  90. Franzese E, Centonze S, Diana A, Carlino F, Guerrera LP, Di Napoli M, et al. PARP inhibitors in ovarian cancer. Cancer Treat Rev. 2019;73:1–9. https://doi.org/10.1016/j.ctrv.2018.12.002

    Article  CAS  PubMed  Google Scholar 

  91. Kanjanapan Y, Lheureux S, Oza AM. Niraparib for the treatment of ovarian cancer. Exp Opin Pharmacother. 2017;18:631–40. https://doi.org/10.1080/14656566.2017.1297423

    Article  CAS  Google Scholar 

  92. Mirza MR, Monk BJ, Herrstedt J, Oza AM, Mahner S, Redondo A, et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N Engl J Med. 2016;375:2154–64. https://doi.org/10.1056/NEJMoa1611310

    Article  CAS  PubMed  Google Scholar 

  93. O’Malley DM. New therapies for ovarian cancer. J Natl Compr Canc Netw. 2019;17:619–21. https://doi.org/10.6004/jnccn.2019.5018

    Article  CAS  PubMed  Google Scholar 

  94. Scott LJ. Niraparib: first global approval. Drugs. 2017;77:1029–34. https://doi.org/10.1007/s40265-017-0752-y

    Article  PubMed  Google Scholar 

  95. Walsh C. Targeted therapy for ovarian cancer: the rapidly evolving landscape of PARP inhibitor use. Minerva Ginecol. 2018;70:150–70. https://doi.org/10.23736/S0026-4784.17.04152-1

    Article  PubMed  Google Scholar 

  96. Heo YA, Duggan ST. Niraparib: a review in ovarian cancer. Target Oncol. 2018;13:533–9. https://doi.org/10.1007/s11523-018-0582-1

    Article  PubMed  Google Scholar 

  97. Oza AM, Matulonis UA, Malander S, Hudgens S, Sehouli J, Del Campo JM, et al. Quality of life in patients with recurrent ovarian cancer treated with niraparib versus placebo (ENGOT-OV16/NOVA): results from a double-blind, phase 3, randomised controlled trial. Lancet Oncol. 2018;19:1117–25. https://doi.org/10.1016/S1470-2045(18)30333-4

    Article  PubMed  Google Scholar 

  98. Zhao G, Li WY, Chen D, Henry JR, Li HY, Chen Z, et al. A novel, selective inhibitor of fibroblast growth factor receptors that shows a potent broad spectrum of antitumor activity in several tumor xenograft models. Mol Cancer Ther. 2011;10:2200–10. https://doi.org/10.1158/1535-7163.MCT-11-0306

    Article  CAS  PubMed  Google Scholar 

  99. Porta R, Borea R, Coelho A, Khan S, Araujo A, Reclusa P, et al. FGFR a promising druggable target in cancer: molecular biology and new drugs. Crit Rev Oncol Hematol. 2017;113:256–67. https://doi.org/10.1016/j.critrevonc.2017.02.018

    Article  PubMed  Google Scholar 

  100. Michael M, Bang YJ, Park YS, Kang YK, Kim TM, Hamid O, et al. A phase 1 study of LY2874455, an oral selective pan-FGFR inhibitor, in patients with advanced cancer. Target Oncol. 2017;12:463–74. https://doi.org/10.1007/s11523-017-0502-9

    Article  PubMed  Google Scholar 

  101. Ge Y, Zhang Y, Li X, Yu Y, Liu Q. Pharmacokinetics and metabolism of H3B-6545, a selective estrogen receptor covalent antagonist, in dog plasma by liquid chromatography combined with electrospray ionization tandem mass spectrometry. J Pharm Biomed Anal. 2019;172:189–99. https://doi.org/10.1016/j.jpba.2019.04.045

    Article  CAS  PubMed  Google Scholar 

  102. Joseph JD, Darimont B, Zhou W, Arrazate A, Young A, Ingalla E, et al. Correction: The selective estrogen receptor downregulator GDC-0810 is efficacious in diverse models of ER+ breast cancer. Elife. 2019;8. https://doi.org/10.7554/eLife.44851.

  103. Lai A, Kahraman M, Govek S, Nagasawa J, Bonnefous C, Julien J, et al. Identification of GDC-0810 (ARN-810), an orally bioavailable selective estrogen receptor degrader (SERD) that demonstrates robust activity in tamoxifen-resistant breast cancer xenografts. J Med Chem. 2015;58:4888–904. https://doi.org/10.1021/acs.jmedchem.5b00054

    Article  CAS  PubMed  Google Scholar 

  104. Rioux N, Smith S, Korpal M, O’Shea M, Prajapati S, Zheng GZ, et al. Nonclinical pharmacokinetics and in vitro metabolism of H3B-6545, a novel selective ERalpha covalent antagonist (SERCA). Cancer Chemother Pharm. 2019;83:151–60. https://doi.org/10.1007/s00280-018-3716-3

    Article  CAS  Google Scholar 

  105. Folkes AJ, Ahmadi K, Alderton WK, Alix S, Baker SJ, Box G, et al. The identification of 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-t hieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer. J Med Chem. 2008;51:5522–32. https://doi.org/10.1021/jm800295d

    Article  CAS  PubMed  Google Scholar 

  106. O’Brien C, Wallin JJ, Sampath D, GuhaThakurta D, Savage H, Punnoose EA, et al. Predictive biomarkers of sensitivity to the phosphatidylinositol 3’ kinase inhibitor GDC-0941 in breast cancer preclinical models. Clin Cancer Res. 2010;16:3670–83. https://doi.org/10.1158/1078-0432.CCR-09-2828

    Article  PubMed  Google Scholar 

  107. Sarker D, Ang JE, Baird R, Kristeleit R, Shah K, Moreno V, et al. First-in-human phase I study of pictilisib (GDC-0941), a potent pan-class I phosphatidylinositol-3-kinase (PI3K) inhibitor, in patients with advanced solid tumors. Clin Cancer Res. 2015;21:77–86. https://doi.org/10.1158/1078-0432.CCR-14-0947

    Article  CAS  PubMed  Google Scholar 

  108. Schmid P, Pinder SE, Wheatley D, Macaskill J, Zammit C, Hu J, et al. Phase II randomized preoperative window-of-opportunity study of the PI3K inhibitor pictilisib plus anastrozole compared with anastrozole alone in patients with estrogen receptor-positive breast cancer. J Clin Oncol. 2016;34:1987–94. https://doi.org/10.1200/JCO.2015.63.9179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Krop IE, Mayer IA, Ganju V, Dickler M, Johnston S, Morales S, et al. Pictilisib for oestrogen receptor-positive, aromatase inhibitor-resistant, advanced or metastatic breast cancer (FERGI): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2016;17:811–21. https://doi.org/10.1016/S1470-2045(16)00106-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Shih KC, Lin CY, Chi HC, Hwang CS, Chen TS, Tang CY, et al. Design of novel FLT-3 inhibitors based on dual-layer 3D-QSAR model and fragment-based compounds in silico. J Chem Inform Model. 2012;52:146–55. https://doi.org/10.1021/ci200434f

    Article  CAS  Google Scholar 

  111. Shiotsu Y, Kiyoi H, Ishikawa Y, Tanizaki R, Shimizu M, Umehara H, et al. KW-2449, a novel multikinase inhibitor, suppresses the growth of leukemia cells with FLT3 mutations or T315I-mutated BCR/ABL translocation. Blood. 2009;114:1607–17. https://doi.org/10.1182/blood-2009-01-199307

    Article  CAS  PubMed  Google Scholar 

  112. Pratz KW, Cortes J, Roboz GJ, Rao N, Arowojolu O, Stine A, et al. A pharmacodynamic study of the FLT3 inhibitor KW-2449 yields insight into the basis for clinical response. Blood. 2009;113:3938–46. https://doi.org/10.1182/blood-2008-09-177030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Flanc RS, Ma FY, Tesch GH, Han Y, Atkins RC, Bennett BL, et al. A pathogenic role for JNK signaling in experimental anti-GBM glomerulonephritis. Kidney Int. 2007;72:698–708. https://doi.org/10.1038/sj.ki.5002404

    Article  CAS  PubMed  Google Scholar 

  114. Ma FY, Flanc RS, Tesch GH, Han Y, Atkins RC, Bennett BL, et al. A pathogenic role for c-Jun amino-terminal kinase signaling in renal fibrosis and tubular cell apoptosis. J Am Soc Nephrol. 2007;18:472–84. https://doi.org/10.1681/ASN.2006060604

    Article  CAS  PubMed  Google Scholar 

  115. Bachegowda L, Morrone K, Winski SL, Mantzaris I, Bartenstein M, Ramachandra N, et al. Pexmetinib: a novel dual inhibitor of TIE2 and P38 mapk with efficacy in preclinical models of myelodysplastic syndromes and acute myeloid leukemia. Cancer Res. 2016;76:4841–9. https://doi.org/10.1158/0008-5472.Can-15-3062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Garcia-Manero G, Khoury HJ, Jabbour E, Lancet J, Winski SL, Cable L, et al. A phase I study of oral ARRY-614, a p38 MAPK/Tie2 dual inhibitor, in patients with low or intermediate-1 risk myelodysplastic syndromes. Clin Cancer Res. 2015;21:985–94. https://doi.org/10.1158/1078-0432.CCR-14-1765

    Article  CAS  PubMed  Google Scholar 

  117. Wong TW, Lee FY, Yu C, Luo FR, Oppenheimer S, Zhang HJ, et al. Preclinical antitumor activity of BMS-599626, a pan-HER kinase inhibitor that inhibits HER1/HER2 homodimer and heterodimer signaling. Clin Cancer Res. 2006;12:6186–93. https://doi.org/10.1158/1078-0432.Ccr-06-0642

    Article  CAS  PubMed  Google Scholar 

  118. Soria JC, Cortes J, Massard C, Armand JP, De Andreis D, Ropert S, et al. Phase I safety, pharmacokinetic and pharmacodynamic trial of BMS-599626 (AC480), an oral pan-HER receptor tyrosine kinase inhibitor, in patients with advanced solid tumors. Ann Oncol. 2012;23:463–71. https://doi.org/10.1093/annonc/mdr137

    Article  PubMed  Google Scholar 

  119. Laufer R, Forrest B, Li SW, Liu Y, Sampson P, Edwards L, et al. The discovery of PLK4 inhibitors: (E)-3-((1H-Indazol-6-yl)methylene)indolin-2-ones as novel antiproliferative agents. J Med Chem. 2013;56:6069–87. https://doi.org/10.1021/jm400380m

    Article  CAS  PubMed  Google Scholar 

  120. Veitch ZW, Cescon DW, Denny T, Yonemoto LM, Fletcher G, Brokx R, et al. Safety and tolerability of CFI-400945, a first-in-class, selective PLK4 inhibitor in advanced solid tumours: a phase 1 dose-escalation trial. Br J Cancer. 2019;121:318–24. https://doi.org/10.1038/s41416-019-0517-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lohse I, Mason JM, Cao PJ, Pintilie M, Bray MR, Hedley DW. Activity of the novel polo-like kinase 4 inhibitor CFI-400945 in pancreatic cancer patient-derived xenografts. Oncotarget. 2017;8:3064–71. https://doi.org/10.18632/oncotarget.13619

    Article  PubMed  Google Scholar 

  122. Dickson MA, Schwartz GK. Development of cell-cycle inhibitors for cancer therapy. Curr Oncol. 2009;16:120–7.

    Google Scholar 

  123. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9:153–66. https://doi.org/10.1038/nrc2602

    Article  CAS  PubMed  Google Scholar 

  124. Yata K, Esashi F. Dual role of CDKs in DNA repair: to be, or not to be. DNA Repair. 2009;8:6–18. https://doi.org/10.1016/j.dnarep.2008.09.002

    Article  CAS  PubMed  Google Scholar 

  125. Burris HA, Bakewell S, Bendell JC, Infante J, Jones SF, Spigel DR, et al. Safety and activity of IT-139, a ruthenium-based compound, in patients with advanced solid tumours: a first-in-human, open-label, dose-escalation phase I study with expansion cohort. ESMO Open. 2016;1:e000154 https://doi.org/10.1136/esmoopen-2016-000154

    Article  PubMed  Google Scholar 

  126. Trondl R, Heffeter P, Kowol CR, Jakupec MA, Berger W, Keppler BK. NKP-1339, the first ruthenium-based anticancer drug on the edge to clinical application. Chem Sci. 2014;5:2925–32. https://doi.org/10.1039/c3sc53243g

    Article  CAS  Google Scholar 

  127. Bijelic A, Theiner S, Keppler BK, Rompel A. X-ray structure analysis of indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019) bound to human serum albumin reveals two ruthenium binding sites and provides insights into the drug binding mechanism. J Med Chem. 2016;59:5894–903. https://doi.org/10.1021/acs.jmedchem.6b00600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Heffeter P, Atil B, Kryeziu K, Groza D, Koellensperger G, Korner W, et al. The ruthenium compound KP1339 potentiates the anticancer activity of sorafenib in vitro and in vivo. Eur J Cancer. 2013;49:3366–75. https://doi.org/10.1016/j.ejca.2013.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Boga SB, Deng YQ, Zhu L, Nan Y, Cooper AB, Shipps GW, et al. MK-8353: discovery of an orally bioavailable dual mechanism ERK inhibitor for oncology. ACS Med Chem Lett. 2018;9:761–7. https://doi.org/10.1021/acsmedchemlett.8b00220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Moschos SJ, Sullivan RJ, Hwu WJ, Ramanathan RK, Adjei AA, Fong PC, et al. Development of MK-8353, an orally administered ERK1/2 inhibitor, in patients with advanced solid tumors. Jci Insight. 2018;3. https://doi.org/10.1172/jci.insight.92352.

  131. Roskoski R Jr. Targeting ERK1/2 protein-serine/threonine kinases in human cancers. Pharm Res. 2019;142:151–68. https://doi.org/10.1016/j.phrs.2019.01.039

    Article  CAS  Google Scholar 

  132. Huang J, Dey R, Wang Y, Jakoncic J, Kurinov I, Huang XY. Structural insights into the induced-fit inhibition of fascin by a small-molecule inhibitor. J Mol Biol. 2018;430:1324–35. https://doi.org/10.1016/j.jmb.2018.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Han S, Huang J, Liu B, Xing B, Bordeleau F, Reinhart-King CA, et al. Improving fascin inhibitors to block tumor cell migration and metastasis. Mol Oncol. 2016;10:966–80. https://doi.org/10.1016/j.molonc.2016.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Cazzola M, Coppola A, Rogliani P, Matera MG. Novel glucocorticoid receptor agonists in the treatment of asthma. Exp Opin Investig Drugs. 2015;24:1473–82. https://doi.org/10.1517/13543784.2015.1078310

    Article  CAS  Google Scholar 

  135. Edman K, Ahlgren R, Bengtsson M, Bladh H, Backstrom S, Dahmen J, et al. The discovery of potent and selective non-steroidal glucocorticoid receptor modulators, suitable for inhalation. Bioorg Med Chem Lett. 2014;24:2571–7. https://doi.org/10.1016/j.bmcl.2014.03.070

    Article  CAS  PubMed  Google Scholar 

  136. Hemmerling M, Nilsson S, Edman K, Eirefelt S, Russell W, Hendrickx R, et al. Selective nonsteroidal glucocorticoid receptor modulators for the inhaled treatment of pulmonary diseases. J Med Chem. 2017;60:8591–605. https://doi.org/10.1021/acs.jmedchem.7b01215

    Article  CAS  PubMed  Google Scholar 

  137. Bonecchi R, Bianchi G, Bordignon PP, D’Ambrosio D, Lang R, Borsatti A, et al. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J Exp Med. 1998;187:129–34. https://doi.org/10.1084/jem.187.1.129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Purandare AV, Somerville JE. Antagonists of CCR4 as immunomodulatory agents. Curr Top Med Chem. 2006;6:1335–44. https://doi.org/10.2174/15680266106061335

    Article  CAS  PubMed  Google Scholar 

  139. Procopiou PA, Ford AJ, Graves RH, Hall DA, Hodgson ST, Lacroix YML, et al. Lead optimisation of the N1 substituent of a novel series of indazole arylsulfonamides as CCR4 antagonists and identification of a candidate for clinical investigation. Bioorg Med Chem Lett. 2012;22:2730–3. https://doi.org/10.1016/j.bmcl.2012.02.104

    Article  CAS  PubMed  Google Scholar 

  140. Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296:1655–7. https://doi.org/10.1126/science.296.5573.1655

    Article  CAS  PubMed  Google Scholar 

  141. Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B. The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol. 2010;11:329–41. https://doi.org/10.1038/nrm2882

    Article  CAS  PubMed  Google Scholar 

  142. Rowan WC, Smith JL, Affleck K, Amour A. Targeting phosphoinositide 3-kinase delta for allergic asthma. Biochem Soc Trans. 2012;40:240–5. https://doi.org/10.1042/BST20110665

    Article  CAS  PubMed  Google Scholar 

  143. Sriskantharajah S, Hamblin N, Worsley S, Calver AR, Hessel EM, Amour A. Targeting phosphoinositide 3-kinase delta for the treatment of respiratory diseases. Ann NY Acad Sci. 2013;1280:35–9. https://doi.org/10.1111/nyas.12039

    Article  CAS  PubMed  Google Scholar 

  144. Down K, Amour A, Baldwin IR, Cooper AWJ, Deakin AM, Felton LM, et al. Optimization of novel indazoles as highly potent and selective inhibitors of phosphoinositide 3-kinase delta for the treatment of respiratory disease. J Med Chem. 2015;58:7381–99. https://doi.org/10.1021/acs.jmedchem.5b00767

    Article  CAS  PubMed  Google Scholar 

  145. Edney D, Hulcoop DG, Leahy JH, Vernon LE, Wipperman MD, Bream RN, et al. Development of flexible and scalable routes to two phosphatidinylinositol-3-kinase delta inhibitors via a common intermediate approach. Org Process Res Dev. 2018;22:368–76. https://doi.org/10.1021/acs.oprd.8b00006

    Article  CAS  Google Scholar 

  146. Lee JH, Zheng Y, von Bornstadt D, Wei Y, Balcioglu A, Daneshmand A, et al. Selective ROCK2 inhibition in focal cerebral ischemia. Ann Clin Transl Neur. 2014;1:2–14. https://doi.org/10.1002/acn3.19

    Article  CAS  Google Scholar 

  147. Zanin-Zhorov A, Weiss JM, Nyuydzefe MS, Chen W, Scher JU, Mo RG, et al. Selective oral ROCK2 inhibitor down-regulates IL-21 and IL-17 secretion in human T cells via STAT3-dependent mechanism. Proc Natl Acad Sci USA. 2014;111:16814–9. https://doi.org/10.1073/pnas.1414189111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Fanaki NH, el-Nakeeb MA. Antimicrobial activity of benzydamine, a non-steroid anti-inflammatory agent. J Chemother. 1992;4:347–52. https://doi.org/10.1080/1120009x.1992.11739190

    Article  CAS  PubMed  Google Scholar 

  149. Turnbull RS. Benzydamine Hydrochloride (Tantum) in the management of oral inflammatory conditions. J Can Dent Assoc. 1995;61:127–34.

    CAS  PubMed  Google Scholar 

  150. Gomez-Lopez L, Hernandez-Rodriguez J, Pou J, Nogue S. Acute overdose due to benzydamine. Hum Exp Toxicol. 1999;18:471–3. https://doi.org/10.1191/096032799678840264

    Article  CAS  PubMed  Google Scholar 

  151. Acar YA, Kalkan M, Cetin R, Cevik E, Cinar O. Acute psychotic symptoms due to benzydamine hydrochloride abuse with alcohol. Case Rep. Psychiatry. 2014;2014:290365 https://doi.org/10.1155/2014/290365

    Article  PubMed  PubMed Central  Google Scholar 

  152. De Lucca GV, Jadhav PK, Waltermire RE, Aungst BJ, Erickson-Viitanen S, Lam PY. De novo design and discovery of cyclic HIV protease inhibitors capable of displacing the active-site structural water molecule. Pharm Biotechnol. 1998;11:257–84. https://doi.org/10.1007/0-306-47384-4_12

    Article  PubMed  Google Scholar 

  153. Rodgers JD, Lam PY, Johnson BL, Wang H, Ko SS, Seitz SP, et al. Design and selection of DMP 850 and DMP 851: the next generation of cyclic urea HIV protease inhibitors. Chem Biol. 1998;5:R312 https://doi.org/10.1016/s1074-5521(98)90301-5

    Article  CAS  PubMed  Google Scholar 

  154. Rodgers JD, Lam PY, Johnson BL, Wang H, Li R, Ru Y, et al. Design and selection of DMP 850 and DMP 851: the next generation of cyclic urea HIV protease inhibitors. Chem Biol. 1998;5:597–608. https://doi.org/10.1016/s1074-5521(98)90117-x

    Article  CAS  PubMed  Google Scholar 

  155. Gomez R, Jolly SJ, Williams T, Vacca JP, Torrent M, McGaughey G, et al. Design and synthesis of conformationally constrained inhibitors of non-nucleoside reverse transcriptase. J Med Chem. 2011;54:7920–33. https://doi.org/10.1021/jm2010173

    Article  CAS  PubMed  Google Scholar 

  156. Lu MQ, Felock PJ, Munshi V, Hrin RC, Wang YJ, Yan YW, et al. Antiviral activity and in vitro mutation development pathways of MK-6186, a novel nonnucleoside reverse transcriptase inhibitor. Antimicrob Agents Ch. 2012;56:3324–35. https://doi.org/10.1128/Aac.00102-12

    Article  CAS  Google Scholar 

  157. Nilius B, Owsianik G, Voets T, Peters JA. Transient receptor potential cation channels in disease. Physiol Rev. 2007;87:165–217. https://doi.org/10.1152/physrev.00021.2006

    Article  CAS  PubMed  Google Scholar 

  158. Szallasi A, Cortright DN, Blum CA, Eid SR. The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat Rev Drug Discov. 2007;6:357–72. https://doi.org/10.1038/nrd2280

    Article  CAS  PubMed  Google Scholar 

  159. Gomtsyan A, Bayburt EK, Schmidt RG, Zheng GZ, Perner RJ, Didomenico S, et al. Novel transient receptor potential vanilloid 1 receptor antagonists for the treatment of pain: structure-activity relationships for ureas with quinoline, isoquinoline, quinazoline, phthalazine, quinoxaline, and cinnoline moieties. J Med Chem. 2005;48:744–52. https://doi.org/10.1021/jm0492958

    Article  CAS  PubMed  Google Scholar 

  160. Gomtsyan A, Bayburt EK, Schmidt RG, Surowy CS, Honore P, Marsh KC, et al. Identification of (R)-1-(5-tert-butyl-2,3-dihydro-1H-inden-1-yl)-3-(1H-indazol-4-yl)urea (ABT-102) as a potent TRPV1 antagonist for pain management. J Med Chem. 2008;51:392–5. https://doi.org/10.1021/jm701007g

    Article  CAS  PubMed  Google Scholar 

  161. Sato T, Morishima Y, Sugimura M, Uchida T, Shirasaki Y. DY-9760e, a novel calmodulin antagonist, reduces brain damage induced by transient focal cerebral ischemia. Eur J Pharm. 1999;370:117–23. https://doi.org/10.1016/s0014-2999(99)00133-8

    Article  CAS  Google Scholar 

  162. Sugimura M, Sato T, Nakayama W, Morishima Y, Fukunaga K, Omitsu M, et al. DY-9760e, a novel calmodulin antagonist with cytoprotective action. Eur J Pharm. 1997;336:99–106. https://doi.org/10.1016/s0014-2999(97)01251-x

    Article  CAS  Google Scholar 

  163. Cox JJ, Reimann F, Nicholas AK, Thornton G, Roberts E, Springell K, et al. An SCN9A channelopathy causes congenital inability to experience pain. Nature. 2006;444:894–8. https://doi.org/10.1038/nature05413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Flinspach M, Xu Q, Piekarz AD, Fellows R, Hagan R, Gibbs A, et al. Insensitivity to pain induced by a potent selective closed-state Nav1.7 inhibitor. Sci Rep. 2017;7:39662 https://doi.org/10.1038/srep39662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Liu KG, Robichaud AJ, Bernotas RC, Yan YF, Lo JR, Zhang MY, et al. 5-piperazinyl-3-sulfonylindazoles as potent and selective 5-hydroxytryptamine-6 antagonists. J Med Chem. 2010;53:7639–46. https://doi.org/10.1021/jm1007825

    Article  CAS  PubMed  Google Scholar 

  166. Rezvani AH, Kholdebarin E, Brucato FH, Callahan PM, Lowe DA, Levin ED. Effect of R3487/MEM3454, a novel nicotinic alpha7 receptor partial agonist and 5-HT3 antagonist on sustained attention in rats. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33:269–75. https://doi.org/10.1016/j.pnpbp.2008.11.018

    Article  CAS  PubMed  Google Scholar 

  167. Wallace TL, Callahan PM, Tehim A, Bertrand D, Tombaugh G, Wang S, et al. RG3487, a novel nicotinic alpha7 receptor partial agonist, improves cognition and sensorimotor gating in rodents. J Pharm Exp Ther. 2011;336:242–53. https://doi.org/10.1124/jpet.110.171892

    Article  CAS  Google Scholar 

  168. Wallace TL, Porter RHP. Targeting the nicotinic alpha7 acetylcholine receptor to enhance cognition in disease. Biochem Pharm. 2011;82:891–903. https://doi.org/10.1016/j.bcp.2011.06.034

    Article  CAS  PubMed  Google Scholar 

  169. Hurst R, Rollema H, Bertrand D. Nicotinic acetylcholine receptors: from basic science to therapeutics. Pharm Ther. 2013;137:22–54. https://doi.org/10.1016/j.pharmthera.2012.08.012

    Article  CAS  Google Scholar 

  170. Guglielmotti A, D’Onofrio E, Coletta I, Aquilini L, Milanese C, Pinza M. Amelioration of rat adjuvant arthritis by therapeutic treatment with bindarit, an inhibitor of MCP-1 and TNF-alpha production. Inflamm Res. 2002;51:252–8. https://doi.org/10.1007/pl00000301

    Article  CAS  PubMed  Google Scholar 

  171. Steiner JL, Davis JM, McClellan JL, Guglielmotti A, Murphy EA. Effects of the MCP-1 synthesis inhibitor bindarit on tumorigenesis and inflammatory markers in the C3(1)/SV40Tag mouse model of breast cancer. Cytokine. 2014;66:60–8. https://doi.org/10.1016/j.cyto.2013.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ge SJ, Shrestha B, Paul D, Keating C, Cone R, Guglielmotti A, et al. The CCL2 synthesis inhibitor bindarit targets cells of the neurovascular unit, and suppresses experimental autoimmune encephalomyelitis. J Neuroinflamm. 2012;9. https://doi.org/10.1186/1742-2094-9-171.

  173. Zoja C, Corna D, Benedetti G, Morigi M, Donadelli R, Guglielmotti A, et al. Bindarit retards renal disease and prolongs survival in murine lupus autoimmune disease. Kidney Int. 1998;53:726–34. https://doi.org/10.1046/j.1523-1755.1998.00804.x

    Article  CAS  PubMed  Google Scholar 

  174. Ble A, Mosca M, Di Loreto G, Guglielmotti A, Biondi G, Bombardieri S, et al. Antiproteinuric effect of chemokine C-C motif ligand 2 inhibition in subjects with acute proliferative lupus nephritis. Am J Nephrol. 2011;34:367–72. https://doi.org/10.1159/000330685

    Article  CAS  PubMed  Google Scholar 

  175. Katz A, Udata C, Ott E, Hickey L, Burczynski ME, Burghart P, et al. Safety, pharmacokinetics, and pharmacodynamics of single doses of LXR-623, a novel liver X-receptor agonist, in healthy participants. J Clin Pharm. 2009;49:643–9. https://doi.org/10.1177/0091270009335768

    Article  CAS  Google Scholar 

  176. Hong C, Tontonoz P. Liver X receptors in lipid metabolism: opportunities for drug discovery. Nat Rev Drug Discov. 2014;13:433–44. https://doi.org/10.1038/nrd4280

    Article  CAS  PubMed  Google Scholar 

  177. Repa JJ, Turley SD, Lobaccaro JA, Medina J, Li L, Lustig K, et al. Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science 2000;289:1524–9. https://doi.org/10.1126/science.289.5484.1524

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunli Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Luo, C., Yang, P. et al. Indazole scaffold: a generalist for marketed and clinical drugs. Med Chem Res 30, 501–518 (2021). https://doi.org/10.1007/s00044-020-02665-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-020-02665-7

Keywords

Navigation