Skip to main content
Log in

A Space-Time Hybridizable Discontinuous Galerkin Method for Linear Free-Surface Waves

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present and analyze a novel space-time hybridizable discontinuous Galerkin (HDG) method for the linear free-surface problem on prismatic space-time meshes. We consider a mixed formulation which immediately allows us to compute the velocity of the fluid. In order to show well-posedness and to obtain a priori error estimates, our space-time HDG formulation makes use of weighted inner products. We perform an a priori error analysis in which the dependence on the time step and spatial mesh size is explicit. The analysis results are supported by numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aizinger, V., Dawson, C.: The local discontinuous Galerkin method for three-dimensional shallow water flow. Comput. Methods Appl. Mech. Eng. 196, 734–746 (2006). https://doi.org/10.1016/j.cma.2006.04.010

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambati, V.R., Bokhove, O.: Space-time discontinuous Galerkin finite element method for shallow water flows. J. Comput. Appl. Math. 204, 452–462 (2007). https://doi.org/10.1016/j.cam.2006.01.047

    Article  MathSciNet  MATH  Google Scholar 

  3. Amestoy, P., Duff, I., L’Excellent, J.Y., Koster, J.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001). https://doi.org/10.1137/S0895479899358194

    Article  MathSciNet  MATH  Google Scholar 

  4. Amestoy, P.R., Guermouche, A., L’Excellent, J.Y., Pralet, S.: Hybrid scheduling for the parallel solution of linear systems. Parallel Comput. 32(2), 136–156 (2006). https://doi.org/10.1016/j.parco.2005.07.004

    Article  MathSciNet  Google Scholar 

  5. Balay, S., Gropp, W.D., Curfman McInnes, L., Smith, B.F.: Efficient management of parallelism in object oriented numerical software libraries. In: Arge, E., Bruaset, A.M., Langtangen, H.P. (eds.) Modern Software Tools in Scientific Computing, pp. 163–202. Birkhäuser Press, Basel (1997)

    Chapter  Google Scholar 

  6. Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W., Kaushik, D., Knepley, M., McInnes, L.C., Rupp, K., Smith, B., Zampini, S., Zhang, H.: PETSc Users Manual. Technical Reports on ANL-95/11-Revision 3.7, Argonne National Laboratory, http://www.mcs.anl.gov/petsc (2016)

  7. Beale, J.: A convergent boundary integral method for three-dimensional water waves. Math. Comput. 70(235), 977–1029 (2001). https://doi.org/10.1090/S0025-5718-00-01218-7

    Article  MathSciNet  MATH  Google Scholar 

  8. Brenner, S., Scott, L.R.: The Mathematical Theory of Finite Element Methods, vol. 15. Springer, New York (2008)

    Book  Google Scholar 

  9. Broeze, J., van Daalen, E.F.G., Zandbergen, P.J.: A three-dimensional panel method for nonlinear free surface waves on vector computers. Comput. Mech. 13(1–2), 12–28 (1993). https://doi.org/10.1007/BF00350699

    Article  MATH  Google Scholar 

  10. Cangiani, A., Dong, Z., Georgoulis, E.H.: \(hp\)-version space-time discontinuous Galerkin methods for parabolic problems on prismatic meshes. SIAM J. Sci. Comput. 39(4), A1251–A1279 (2017). https://doi.org/10.1137/16M1073285

    Article  MathSciNet  MATH  Google Scholar 

  11. Cockburn, B., Dong, B., Guzmán, J.: A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math. Comput. 77, 887–1916 (2008). https://doi.org/10.1090/S0025-5718-08-02123-6

    Article  MathSciNet  MATH  Google Scholar 

  12. Cockburn, B., Dong, B., Guzmán, J., Restelli, M., Sacco, R.: A hybridizable discontinuous Galerkin method for steady-state convection-diffusion-reaction problems. SIAM J. Sci. Comput. 31(5), 3827–3846 (2009a). https://doi.org/10.1137/080728810

    Article  MathSciNet  MATH  Google Scholar 

  13. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47, 1319–1365 (2009b). https://doi.org/10.1137/070706616

    Article  MathSciNet  MATH  Google Scholar 

  14. Cockburn, B., Gopalakrishnan, J., Sayas, F.J.: A projection-based error analysis of HDG methods. Math. Comput. 79, 1351–1367 (2010). https://doi.org/10.1090/S0025-5718-10-02334-3

    Article  MathSciNet  MATH  Google Scholar 

  15. Dawson, C., Proft, J.: Discontinuous and coupled continuous/discontinuous Galerkin methods for the shallow water equations. Comput. Methods Appl. Mech. Eng. 191(41–42), 4721–4746 (2002). https://doi.org/10.1016/S0045-7825(02)00402-4

    Article  MathSciNet  MATH  Google Scholar 

  16. Dawson, C., Proft, J.: Discontinuous/continuous Galerkin methods for coupling the primitive and wave continuity equations of shallow water. Comput. Methods Appl. Mech. Eng. 192(47–48), 5123–5145 (2003). https://doi.org/10.1016/j.cma.2003.07.004

    Article  MathSciNet  MATH  Google Scholar 

  17. Debnath, L.: Nonlinear Water Waves. Academic Press Inc, Cambridge (1994)

    MATH  Google Scholar 

  18. Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods, Mathématiques et Applications, vol. 69. Springer, Berlin (2012)

    MATH  Google Scholar 

  19. Dobrev, V.A., Kolev, T.V., et al.: MFEM: Modular finite element methods library. https://mfem.org/, https://doi.org/10.11578/dc.20171025.1248 (2018)

  20. Fochesato, C., Dias, F.: A fast method for nonlinear three-dimensional free-surface waves. Proc. R. Soc. Math. Phys. Eng. Sci. 462(2073), 2715–2735 (2006). https://doi.org/10.1098/rspa.2006.1706

    Article  MathSciNet  MATH  Google Scholar 

  21. French, D.A.: A space-time finite element method for the wave equation. Comput. Methods Appl. Mech. Eng. 107, 145–157 (1993). https://doi.org/10.1016/0045-7825(93)90172-T

    Article  MathSciNet  MATH  Google Scholar 

  22. Gagarina, E., Ambati, V.R., van der Vegt, J.J.W., Bokhove, O.: Variational space-time (dis)continuous Galerkin method for nonlinear free surface water waves. J. Comput. Phys. 275, 459–483 (2014). https://doi.org/10.1016/j.jcp.2014.06.035

    Article  MathSciNet  MATH  Google Scholar 

  23. Georgoulis, E.H.: Discontinuous Galerkin Methods on Shape-Regular and Anisotropic Meshes. D.Phil. Thesis, University of Oxford (2003)

  24. Horvath, T.L., Rhebergen, S.: A locally conservative and energy-stable finite element method for the Navier–Stokes problem on time-dependent domains. Int. J. Numer. Methods Fluids 89(12), 519–532 (2019). https://doi.org/10.1002/fld.4707

    Article  MathSciNet  Google Scholar 

  25. Houston, P., Schwab, C., Süli, E.: Discontinuous \(hp\)-finite element methods for advection–diffusion–reaction problems. SIAM J. Numer. Anal. 39(6), 2133–2163 (2002). https://doi.org/10.1137/S0036142900374111

    Article  MathSciNet  MATH  Google Scholar 

  26. Kirby, R.M., Sherwin, S.J., Cockburn, B.: To CG or to HDG: a comparative study. J. Sci. Comput. 51(1), 183–212 (2012). https://doi.org/10.1007/s10915-011-9501-7

    Article  MathSciNet  MATH  Google Scholar 

  27. Kirk, K.L.A., Horvath, T.L., Cesmelioglu, A., Rhebergen, S.: Analysis of a space-time hybridizable discontinuous Galerkin method for the advection–diffusion problem on time-dependent domains. SIAM J. Numer. Anal. 57(4), 1677–1696 (2019). https://doi.org/10.1137/18M1202049

    Article  MathSciNet  MATH  Google Scholar 

  28. Klaij, C.M., van der Vegt, J.J.W., van der Ven, H.: Space-time discontinuous Galerkin method for the compressible Navier–Stokes equations. J. Comput. Phys. 217, 589–611 (2006). https://doi.org/10.1016/j.jcp.2006.01.018

    Article  MathSciNet  MATH  Google Scholar 

  29. Nguyen, N.C., Peraire, J., Cockburn, B.: High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics. J. Comput. Phys. 230, 3695–3718 (2011). https://doi.org/10.1016/j.jcp.2011.01.035

    Article  MathSciNet  MATH  Google Scholar 

  30. Rhebergen, S., Cockburn, B.: A space-time hybridizable discontinuous Galerkin method for incompressible flows on deforming domains. J. Comput. Phys. 231, 4185–4204 (2012). https://doi.org/10.1016/j.jcp.2012.02.011

    Article  MathSciNet  MATH  Google Scholar 

  31. Rhebergen, S., Cockburn, B.: Space-time hybridizable discontinuous Galerkin method for the advection-diffusion equation on moving and deforming meshes. In: de Moura, C., Kubrusly, C. (eds.) The Courant–Friedrichs–Lewy (CFL) Condition, 80 Years After its Discovery, pp. 45–63. Birkhäuser Science, Basel (2013). https://doi.org/10.1007/978-0-8176-8394-8_4

    Chapter  Google Scholar 

  32. Rhebergen, S., Bokhove, O., van der Vegt, J.J.W.: Discontinuous galerkin finite element method for shallow two-phase flows. Comput. Methods Appl. Mech. Eng. 198(5–8), 819–830 (2009). https://doi.org/10.1016/j.cma.2008.10.019

    Article  MathSciNet  MATH  Google Scholar 

  33. Rhebergen, S., Cockburn, B., van der Vegt, J.J.W.: A space-time discontinuous Galerkin method for the incompressible Navier–Stokes equations. J. Comput. Phys. 233, 339–358 (2013). https://doi.org/10.1016/j.jcp.2012.08.052

    Article  MathSciNet  MATH  Google Scholar 

  34. Romate, J.E., Zandbergen, P.J.: Boundary integral equation formulations for free-surface flow problems in two and three dimensions. Comput. Mech. 4(4), 276–282 (1989). https://doi.org/10.1007/BF00301385

    Article  Google Scholar 

  35. Stanglmeier, M., Nguyen, N.C., Peraire, J., Cockburn, B.: An explicit hybridizable discontinuous Galerkin method for the acoustic wave equation. Comput. Methods Appl. Mech. Eng. 300, 748–769 (2016). https://doi.org/10.1016/j.cma.2015.12.003

    Article  MathSciNet  MATH  Google Scholar 

  36. Sudirham, J.J., van der Vegt, J.J.W., van Damme, R.J.: Space-Time Discontinuous Galerkin Method for Advection–Diffusion Problems on Time-Dependent Domains. Ph.D Thesis, University of Twente (2005)

  37. Sudirham, J.J., van der Vegt, J.J.W., van Damme, R.J.: Space-time discontinuous Galerkin methods for convection–diffusion problems. Appl. Numer. Math. 56, 1491–1518 (2006). https://doi.org/10.1016/j.apnum.2005.11.003

    Article  MathSciNet  MATH  Google Scholar 

  38. Tavelli, M., Dumbser, M.: A staggered space-time discontinuous Galerkin method for the incompressible Navier–Stokes equations on two-dimensional triangular meshes. Comput. Fluids 119, 235–249 (2015). https://doi.org/10.1016/j.compfluid.2015.07.003

    Article  MathSciNet  MATH  Google Scholar 

  39. Tavelli, M., Dumbser, M.: A staggered space-time discontinuous Galerkin method for the three-dimensional incompressible Navier-Stokes equations on unstructured tetrahedral meshes. J. Comput. Phys. 319, 294–323 (2016). https://doi.org/10.1016/j.jcp.2016.05.009

    Article  MathSciNet  MATH  Google Scholar 

  40. Tomar, S.K., van der Vegt, J.J.W.: A Runge–Kutta discontinuous Galerkin method for linear free-surface gravity waves using high order velocity recovery. Comput. Methods Appl. Mech. Eng. 196, 1984–1996 (2007). https://doi.org/10.1016/j.cma.2006.11.007

    Article  MathSciNet  MATH  Google Scholar 

  41. Tsai, W., Yue, D.K.P.: Computation of nonlinear free-surface flows. Annu. Rev. Fluid Mech. 28(1), 249–278 (1996). https://doi.org/10.1146/annurev.fl.28.010196.001341

    Article  MathSciNet  Google Scholar 

  42. van der Vegt, J.J.W., Sudirham, J.J.: A space-time discontinuous Galerkin method for the time-dependent Oseen equations. Appl. Numer. Math. 58, 1892–1917 (2008). https://doi.org/10.1016/j.apnum.2007.11.010

    Article  MathSciNet  MATH  Google Scholar 

  43. van der Vegt, J.J.W., Tomar, S.K.: Discontinuous Galerkin method for linear free-surface gravity waves. J. Sci. Comput. 22, 531–567 (2005). https://doi.org/10.1007/s10915-004-4149-1

    Article  MathSciNet  MATH  Google Scholar 

  44. van der Vegt, J.J.W., van der Ven, H.: Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows. I. General formulation. J. Comput. Phys. 182, 546–585 (2002). https://doi.org/10.1006/jcph.2002.7185

    Article  MathSciNet  MATH  Google Scholar 

  45. van der Vegt, J.J.W., Xu, Y.: Space-time discontinuous Galerkin method for nonlinear water waves. J. Comput. Phys. 224, 17–39 (2007). https://doi.org/10.1016/j.jcp.2006.11.031

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang, D., Tezaur, R., Farhat, C.: A hybrid discontinuous in space and time Galerkin method for wave propagation problems. Int. J. Numer. Methods Fluids 99, 263–289 (2014). https://doi.org/10.1002/nme.4673

    Article  MathSciNet  MATH  Google Scholar 

  47. Westhuis, J.: The Numerical Simulation of Nonlinear Waves in a Hydrodynamic Model Test Basin. Ph.D Thesis, University of Twente (2001)

  48. Yakovlev, S., Moxey, D., Kirby, R.M., Sherwin, S.J.: To CG or to HDG: a comparative study in 3D. J. Sci. Comput. 67(1), 192–220 (2016). https://doi.org/10.1007/s10915-015-0076-6

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giselle Sosa Jones.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

SR gratefully acknowledges support from the Natural Sciences and Engineering Research Council of Canada through the Discovery Grant program (RGPIN-05606-2015) and the Discovery Accelerator Supplement (RGPAS-478018-2015).

Appendix A: HDG with BDF2 Time Stepping

Appendix A: HDG with BDF2 Time Stepping

In this section we present a discretization for the linear free-surface problem in which we combine an HDG spatial discretization with BDF2 time stepping. The discretization in this appendix is inspired by the DG discretization presented in [43].

First, we introduce a variable \({\varvec{q}} = -\nabla \phi \) and write Eq. (2c) as

$$\begin{aligned} {\varvec{q}} + \nabla \phi&= 0&\text {in } \varOmega , \end{aligned}$$
(58a)
$$\begin{aligned} \nabla \cdot {\varvec{q}}&= 0&\text {in } \varOmega , \end{aligned}$$
(58b)
$$\begin{aligned} {\varvec{q}} \cdot {\varvec{n}}&= \partial _{t}^2\phi&\text {on } \varGamma _S, \end{aligned}$$
(58c)
$$\begin{aligned} {\varvec{q}} \cdot {\varvec{n}}&= 0&\text {on } \varGamma _N. \end{aligned}$$
(58d)

Next, let \({\mathcal {T}}^{\varOmega } := \left\{ K\right\} \) denote a triangulation of the domain \(\varOmega \subset {\mathbb {R}}^2\). The boundary and length measure of an element K are denoted by, respectively, \(\partial K\) and \(h_K\). Furthermore, we denote by \({\mathbb {E}}_h^0\) the set of interior edges of \({\mathcal {T}}^{\varOmega }\), by \({\mathbb {E}}_h^{\partial }\) we denote the set of boundary edges, and we let \({\mathbb {E}}_h = {\mathbb {E}}_h^0\cup {\mathbb {E}}_h^{\partial }\). Additionally, we denote by \({\mathbb {E}}_h^{S}\) the set of edges that lie on the free-surface boundary.

To define the HDG method we require the following finite element spaces:

$$\begin{aligned} W_h^p&:= \left\{ w\in L^2(\varOmega ) \, : w|_K\in P^p(K),\,\forall K\in {\mathcal {T}}_h\right\} , \\ {\varvec{V}}_h^p&:= \left\{ {\varvec{v}}\in \left[ L^2(\varOmega )\right] ^2 \, : {\varvec{v}}|_K\in \left[ P^p(K)\right] ^2,\,\forall K\in {\mathcal {T}}_h\right\} , \\ M_h^p&:= \left\{ \mu \in L^2({\mathbb {E}}_h)\, : \mu |_e\in P^p(e),\,\forall e\in {\mathbb {E}}_h\right\} , \end{aligned}$$

where \(P^p(D)\) denote the space of polynomials of degree at most p on a domain D.

For functions \({\varvec{f}}\) and \({\varvec{g}}\) in \(\left[ L^2(D)\right] ^2\), we denote \(\left( {\varvec{f}},{\varvec{g}}\right) _D = \int _D{\varvec{f}}\cdot {\varvec{g}}\hbox {d}D\), where \(D\subset {\mathbb {R}}^2\). If f and g are functions in \(L^2(D)\), we denote \(\left( f,g\right) _D = \int _D fg\,\hbox {d}D\) if \(D\subset {\mathbb {R}}^2\), and \(\langle f,g \rangle _D = \int _D fg \hbox {d}s\) if \(D \subset {\mathbb {R}}\). Moreover, we use the following notation

$$\begin{aligned} \left( w,v\right) _{{\mathcal {T}}^{\varOmega }}&= \sum _{K\in {\mathcal {T}}^{\varOmega }}\left( w,v\right) _K,&\langle w,v \rangle _{\partial {\mathcal {T}}^{\varOmega }}&= \sum _{K\in {\mathcal {T}}^{\varOmega }}\langle w, v \rangle _{\partial K}, \\ \langle w, v \rangle _{{\mathbb {E}}_h}&= \sum _{e\in {\mathbb {E}}_h}\langle w, v\rangle _{e},&\langle w, v \rangle _{{\mathbb {E}}_h^S}&= \sum _{e\in {\mathbb {E}}_h^S}\langle w, v\rangle _{e}. \end{aligned}$$

The semidiscrete HDG discretization for eq. (58) is now given by: Find \(\left( {\varvec{q}}_h, \phi _h, \lambda _h\right) \in {\varvec{V}}_h^p \times W_h^p \times M_h^p\) such that

$$\begin{aligned} -\left( {\varvec{q}}_h, {\varvec{v}}_h\right) _{{\mathcal {T}}^{\varOmega }} + \left( \phi _h, \nabla \cdot {\varvec{v}}_h\right) _{{\mathcal {T}}^{\varOmega }} - \langle \lambda _h, {\varvec{v}}_h \cdot {\varvec{n}}\rangle _{\partial {\mathcal {T}}^{\varOmega }}&= 0, \\ \left( w_h,\nabla \cdot {\varvec{q}}_h\right) _{{\mathcal {T}}^{\varOmega }} + \tau \langle w_h, \phi _h \rangle _{\partial {\mathcal {T}}^{\varOmega }} - \tau \langle w_h, \lambda _h \rangle _{\partial {\mathcal {T}}^{\varOmega }}&= 0, \\ -\langle {\varvec{q}}_h \cdot {\varvec{n}}, \mu _h \rangle _{{\mathbb {E}}_h} - \tau \langle \phi _h, \mu _h \rangle _{{\mathbb {E}}_h} + \tau \langle \lambda _h, \mu _h \rangle _{{\mathbb {E}}_h}&= \langle \partial ^2_t\phi _h ,\mu _h \rangle _{{\mathbb {E}}_h^S}, \end{aligned}$$

for all \(\left( {\varvec{v}}_h, w_h, \mu _h\right) \in {\varvec{V}}_h^p \times W_h^p \times M_h^p\). We follow the identical approach introduced in [43] to discretize the \(\partial ^2_t\phi _h\) and to obtain an approximation to the wave height \(\zeta _h\) by a second order backward differentiation formula (BDF2). We therefore do not present the time discretization here.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sosa Jones, G., Lee, J.J. & Rhebergen, S. A Space-Time Hybridizable Discontinuous Galerkin Method for Linear Free-Surface Waves. J Sci Comput 85, 61 (2020). https://doi.org/10.1007/s10915-020-01340-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01340-8

Keywords

Navigation