Skip to main content
Log in

Gas permeability of graphite foil prepared from exfoliated graphite with different microstructures

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Graphite foil (GF) is widely used as a sealing material in different industries. Different methods of GF preparation result in differences of its crystalline and pore structure, which in turn influences its ability to pass through gases and provide the required level of sealability. The influence of the preparation temperature of exfoliated graphite (EG) on the microstructure and gas permeability of EG-based graphite foil was investigated. The preparation of graphite foil consisted of the synthesis of stage-1 graphite bisulfate, followed by washing with water, rapid heating of obtained expandable graphite at temperatures of 600, 800, 1000 °C with the formation of exfoliated graphite and the subsequent compression of EG into graphite foil. The structure of the materials was characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and Raman spectroscopy. The correlation between EG preparation conditions, the presence of amorphous and turbostratic carbon, which influence the GF porous structure and GF gas permeance, was found. Graphite foil based on EG obtained at 600 °C had the minimal nitrogen and hydrogen permeances of 0.11·10–10 and 0.44·10–10 mol m−2 s−1 Pa−1, while the increase in EG preparation temperature up to 1000 °C raises GF gas permeance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Chung DDL (2015) A review of exfoliated graphite. J Mater Sci 51:554–568. https://doi.org/10.1007/s10853-015-9284-6

    Article  CAS  Google Scholar 

  2. Chen PH, Chung DDL (2013) Viscoelastic behavior of the cell wall of exfoliated graphite. Carbon 61:305–312. https://doi.org/10.1016/j.carbon.2013.05.009

    Article  CAS  Google Scholar 

  3. Lutfullin MA, Shornikova ON, Vasiliev AV, Pokholok KV, Osadchaya VA, Saidaminov MI, Sorokina NE, Avdeev VV (2014) Petroleum products and water sorption by expanded graphite enhanced with magnetic iron phases. Carbon 66:417–425. https://doi.org/10.1016/j.carbon.2013.09.017

    Article  CAS  Google Scholar 

  4. Takeuchi K, Fujishigea M, Kitazawa H, Akuzawa N, Medina JO, Morelos-Gomez A, Cruz-Silva R, Araki T, Hayashi T, Terrones M, Endo M (2015) Oil sorption by exfoliated graphite from dilute oil-water emulsion for practical applications in produced water treatments. J Water Process Eng 8:91–98. https://doi.org/10.1016/j.jwpe.2015.09.002

    Article  Google Scholar 

  5. Crock CA, Tarabara VV (2016) Pd and Pd-Au nanocatalysts supported on exfoliated graphite for high throughput dehalogenation by nanocomposite membranes. Environ Sci Nano 3:453–461. https://doi.org/10.1039/c5en00245a

    Article  CAS  Google Scholar 

  6. Hung WC, Wu KH, Lyu DY, Cheng KF, Huang WC (2017) Preparation and characterization of expanded graphite/metal oxides for antimicrobial application. Mater Sci Eng C 75:1019–1025. https://doi.org/10.1016/j.msec.2017.03.043

    Article  CAS  Google Scholar 

  7. Mitra S, Lokesh KS, Sampath S (2008) Exfoliated graphite-ruthenium oxide composite electrodes for electrochemical supercapacitors. J Power Sour 185:1544–1549. https://doi.org/10.1016/j.jpowsour.2008.09.014

    Article  CAS  Google Scholar 

  8. Bang GS, So HM, Lee MJ, Ahn CW (2012) Preparation of graphene with few defects using expanded graphite and rose bengal. J Mater Chem 22:4806–4810. https://doi.org/10.1039/c2jm14205h

    Article  CAS  Google Scholar 

  9. Chen PH, Chung DDL (2012) Dynamic mechanical behavior of flexible graphite made from exfoliated graphite. Carbon 50:283–289. https://doi.org/10.1016/j.carbon.2011.08.048

    Article  CAS  Google Scholar 

  10. Sorokina NE, Redchitz AV, Ionov SG, Avdeev VV (2006) Different exfoliated graphite as a base of sealing materials. J Phys Chem Sol 67:1202–1204. https://doi.org/10.1016/j.jpcs.2006.01.048

    Article  CAS  Google Scholar 

  11. Savchenko DV, Serdan AA, Morozov VA, Van Tendeloo G, Ionov SG (2012) Improvement of the oxidation stability and the mechanical properties of flexible graphite foil by boron oxide impregnation. New Carbon Mater 27:12–18. https://doi.org/10.1016/S1872-5805(12)60001-8

    Article  CAS  Google Scholar 

  12. Herzog N, Egbers C (2013) Atmospheric dispersion of CO2 released from pipeline leakages. Energy Procedia 40:232–239. https://doi.org/10.1016/j.egypro.2013.08.027

    Article  CAS  Google Scholar 

  13. Qian J, Li X, Gao Z, Jin Z (2020) A numerical study of hydrogen leakage and diffusion in a hydrogen refueling station. Int J Hydrogen Energy 45:14428–14439. https://doi.org/10.1016/j.ijhydene.2020.03.140

    Article  CAS  Google Scholar 

  14. Rui Z, Han G, Zhang H, Wang S, Pu H, Ling K (2017) A new model to evaluate two leak points in a gas pipeline. J Nat Gas Sci Eng 46:491–497. https://doi.org/10.1016/j.jngse.2017.08.025

    Article  Google Scholar 

  15. Hamm JBS, Ambrosi A, Griebeler JG, Marcilio NR, Tessaro IC, Pollo LD (2017) Recent advances in the development of supported carbon membranes for gas separation. Int J Hydrogen Energy 42:24830–24845. https://doi.org/10.1016/j.ijhydene.2017.08.071

    Article  CAS  Google Scholar 

  16. Schulz A, Steinbach F, Caro J (2014) Pressed graphite crystals as gas separation membrane for steam reforming of ethanol. J Memb Sci 469:284–291. https://doi.org/10.1016/j.memsci.2014.06.047

    Article  CAS  Google Scholar 

  17. Fishlock SJ, Pu SH, Bhattacharya G, Han Y, McLaughlin J, McBride JW, Chong HMH, O’Shea SJ (2018) Micromachined nanocrystalline graphite membranes for gas separation. Carbon 138:125–133. https://doi.org/10.1016/j.carbon.2018.05.071

    Article  CAS  Google Scholar 

  18. Wollbrink A, Volgmann K, Koch J, Kanthasamy K, Tegenkamp C, Li Y, Richter H, Kamnitz S, Steinbach F, Feldhoff A, Caro J (2016) Amorphous, turbostratic and crystalline carbon membranes with hydrogen selectivity. Carbon 106:93–105. https://doi.org/10.1016/j.carbon.2016.04.062

    Article  CAS  Google Scholar 

  19. Ang EYM, Toh W, Yeo J, Lin R, Liu Z, Geethalakshmi KR, Ng TY (2020) A review on low dimensional carbon desalination and gas separation membrane designs. J Memb Sci 598:117785. https://doi.org/10.1016/j.memsci.2019.117785

    Article  CAS  Google Scholar 

  20. Song J, Zhao Y, Zhang W, He X, Zhang D, He Z, Gao Y, Jin C, Xia H, Wang J, Huai P, Zhou X (2016) Helium permeability of different structure pyrolytic carbon coatings on graphite prepared at low temperature and atmosphere pressure. J Nucl Mater 468:31–36. https://doi.org/10.1016/j.jnucmat.2015.10.033

    Article  CAS  Google Scholar 

  21. Biloe S, Mauran S (2003) Gas flow through highly porous graphite matrices. Carbon 41:525–537. https://doi.org/10.1016/S0008-6223(02)00363-9

    Article  CAS  Google Scholar 

  22. Mauran S, Rigaud L, Coudevylle O (2001) Application of the carman-kotenzy correlation to a high-porosity and anisotropic consolidated medium: The compressed expanded natural graphite. Transp Porous Media 43:355–376. https://doi.org/10.1023/A:1010735118136

    Article  Google Scholar 

  23. Celzard A, Marêché J (2001) Permeability and formation factor in compressed expanded graphite. J Phys Condens Matter 13:4387–4403. https://doi.org/10.1088/0953-8984/13/20/302

    Article  CAS  Google Scholar 

  24. Celzard A, Marêché JF, Perrin A (2002) Transport in porous graphite: Gas permeation and ion diffusion experiments. Fuel Process Technol 77–78:467–473. https://doi.org/10.1016/S0378-3820(02)00091-7

    Article  Google Scholar 

  25. Efimova EA, Syrtsova DA, Teplyakov VV (2017) Gas permeability through graphite foil: The influence of physical density, membrane orientation and temperature. Sep Purif Technol 179:467–474. https://doi.org/10.1016/j.seppur.2017.02.023

    Article  CAS  Google Scholar 

  26. Badenhorst H (2014) Microstructure of natural graphite flakes revealed by oxidation: Limitations of XRD and Raman techniques for crystallinity estimates. Carbon 66:674–690. https://doi.org/10.1016/j.carbon.2013.09.065

    Article  CAS  Google Scholar 

  27. Afanasov IM, Shornikova ON, Kirilenko DA, Vlasov II, Zhang L, Verbeeck J, Avdeev VV, Van Tendeloo G (2010) Graphite structural transformations during intercalation by HNO3 and exfoliation. Carbon 48:1862–1865. https://doi.org/10.1016/j.carbon.2010.01.055

    Article  CAS  Google Scholar 

  28. Kovtyukhova NI, Wang Y, Berkdemir A, Cruz-Silva R, Terrones M, Crespi VH, Mallouk TE (2014) Non-oxidative intercalation and exfoliation of graphite by Brønsted acids. Nat Chem 6:957–963. https://doi.org/10.1038/nchem.2054

    Article  CAS  Google Scholar 

  29. Dimiev AM, Ceriotti G, Behabtu N, Zakhidov D, Pasquali M, Saito R, Tour JM (2013) Direct real-time monitoring of stage transitions in graphite intercalation compounds. ACS Nano 7:2773–2780. https://doi.org/10.1021/nn400207e

    Article  CAS  Google Scholar 

  30. Dimiev AM, Ceriotti G, Metzger A, Kim ND, Tour JM (2016) Chemical Mass Production of Graphene Nanoplatelets in ∼100% Yield. ACS Nano 10:274–279. https://doi.org/10.1021/acsnano.5b06840

    Article  CAS  Google Scholar 

  31. Sorokina NE, Nikol’skaya IV, Ionov SG, Avdeev VV, (2005) Acceptor-type graphite intercalation compounds and new carbon materials based on them. Russ Chem Bull 54:1749–1767

    Article  CAS  Google Scholar 

  32. Saidaminov MI, Maksimova NV, Zatonskih PV, Komarov AD, Lutfullin MA, Sorokina NE, Avdeev VV (2013) Thermal decomposition of graphite nitrate. Carbon 59:337–343. https://doi.org/10.1016/j.carbon.2013.03.028

    Article  CAS  Google Scholar 

  33. Dimiev AM, Shukhina K, Behabtu N, Pasquali M, Tour JM (2019) Stage transitions in graphite intercalation compounds: role of the graphite structure. J Phys Chem C 123:19246–19253. https://doi.org/10.1021/acs.jpcc.9b06726

    Article  CAS  Google Scholar 

  34. Dimiev AM, Tour JM (2014) Mechanism of graphene oxide formation. ACS Nano 8:3060–3068. https://doi.org/10.1021/nn500606a

    Article  CAS  Google Scholar 

  35. Gurzeda B, Florczak P, Kempinski M, Peplinska B, Krawczyk P, Jurga S (2016) Synthesis of graphite oxide by electrochemical oxidation in aqueous perchloric acid. Carbon 100:540–545

    Article  CAS  Google Scholar 

  36. Cao J, He P, Mohammed MA, Zhao X, Young RJ, Derby B, Kinloch IA, Dryfe RAW (2017) Two-step electrochemical intercalation and oxidation of graphite for the mass production of graphene oxide. J Am Chem Soc 139:17446–17456. https://doi.org/10.1021/jacs.7b08515

    Article  CAS  Google Scholar 

  37. Ying Z, Lin X, Qi Y, Luo J (2008) Preparation and characterization of low-temperature expandable graphite. Mater Res Bull 43:2677–2686. https://doi.org/10.1016/j.materresbull.2007.10.027

    Article  CAS  Google Scholar 

  38. Focke WW, Badenhorst H, Mhike W, Kruger HJ, Lombaard D (2014) Characterization of commercial expandable graphite fire retardants. Thermochim Acta 584:8–16. https://doi.org/10.1016/j.tca.2014.03.021

    Article  CAS  Google Scholar 

  39. Ivanov AV, Maksimova NV, Kamaev AO, Malakho AP, Avdeev VV (2018) Influence of intercalation and exfoliation conditions on macrostructure and microstructure of exfoliated graphite. Mater Lett 228:403–406. https://doi.org/10.1016/j.matlet.2018.06.072

    Article  CAS  Google Scholar 

  40. Inagaki M, Saji N, Zheng Y-P, Kang F, Toyoda M (2004) Pore development during exfoliation of natural graphite. Tanso 2004:258–264. https://doi.org/10.7209/tanso.2004.258

    Article  Google Scholar 

  41. Van Heerden X, Badenhorst H (2015) The influence of three different intercalation techniques on the microstructure of exfoliated graphite. Carbon 88:173–184. https://doi.org/10.1016/j.carbon.2015.03.006

    Article  CAS  Google Scholar 

  42. Goudarzi R, Hashemi Motlagh G (2019) The effect of graphite intercalated compound particle size and exfoliation temperature on porosity and macromolecular diffusion in expanded graphite. Heliyon 5:e02595. https://doi.org/10.1016/j.heliyon.2019.e02595

    Article  CAS  Google Scholar 

  43. Ivanov AV, Manylov MS, Maksimova NV, Kirichenko AN, Filimonov SV, Malakho AP, Avdeev VV (2019) Effect of preparation conditions on gas permeability and sealing efficiency of graphite foil. J Mater Sci 54:4457–4469. https://doi.org/10.1007/s10853-018-3151-1

    Article  CAS  Google Scholar 

  44. Celzard A, Mareche JF, Furdin G (2005) Modelling of exfoliated graphite. Prog Mater Sci 50:93–179. https://doi.org/10.1016/j.pmatsci.2004.01.001

    Article  CAS  Google Scholar 

  45. Contescu CI, Arregui-Mena JD, Campbell AA, Edmondson PD, Gallego NC, Takizawa K, Katoh Y (2019) Development of mesopores in superfine grain graphite neutron-irradiated at high fluence. Carbon 141:663–675. https://doi.org/10.1016/j.carbon.2018.08.039

    Article  CAS  Google Scholar 

  46. Petukhov DI, Eliseev AA (2016) Gas permeation through nanoporous membranes in the transitional flow region. Nanotechnology 27:1–11

    Article  Google Scholar 

  47. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107. https://doi.org/10.1103/PhysRevB.61.14095

    Article  CAS  Google Scholar 

  48. Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8:235–246. https://doi.org/10.1038/nnano.2013.46

    Article  CAS  Google Scholar 

  49. Schuepfer DB, Badaczewski F, Guerra-Castro JM, Hofmann DM, Heiliger C, Smarsly B, Klar PJ (2020) Assessing the structural properties of graphitic and non-graphitic carbons by Raman spectroscopy. Carbon 161:359–372. https://doi.org/10.1016/j.carbon.2019.12.094

    Article  CAS  Google Scholar 

  50. Piazza F, Gough K, Monthioux M, Monthioux M, Puech P, Gerber I, Wiens R, Paredes G, Ozoria C (2019) Low temperature, pressureless sp2 to sp3 transformation of ultrathin, crystalline carbon films. Carbon 145:10–22. https://doi.org/10.1016/j.carbon.2019.01.017

    Article  CAS  Google Scholar 

  51. Cancado LG, Takai K, Enoki T, Endo M, Kim YA, Mizusaki H, Speziali NL, Jorio A (2008) Measuring the degree of stacking order in graphite by Raman spectroscopy. Carbon 46:272–275. https://doi.org/10.1016/j.carbon.2007.11.015

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by the Ministry of Education and Science of the Russian Federation, Contract No. AAAA-A16-116053110012-5 «New technologies and multifunctional materials for safety, reliability and energy efficiency».

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei V. Ivanov.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, A.V., Maksimova, N.V., Manylov, M.S. et al. Gas permeability of graphite foil prepared from exfoliated graphite with different microstructures. J Mater Sci 56, 4197–4211 (2021). https://doi.org/10.1007/s10853-020-05541-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05541-2

Navigation