Skip to main content
Log in

Anticorrosive and UV-blocking waterborne polyurethane composite coating containing novel two-dimensional Ti3C2 MXene nanosheets

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, Ti3C2 MXene, a novel two-dimensional nanosheet, was introduced to waterborne polyurethane (WPU) coatings to prepare a composite coating. First, MAX phase materials were in situ etched by HF acid and further intercalated by water molecules to obtain exfoliated single-layer MXene nanosheet. And then, composite coatings were prepared via solution-blending low addition (0–0.4 wt%) of MXene, self-prepared waterborne polyacrylate emulsion (PAE) and isocyanate hardener, applying on Q235 mild steel. Results of AFM, XRD SEM and SEM–EDS confirm that single-layer MXene nanosheets with large lateral-to-thickness ratio are successfully prepared and achieved homogenous distribution within WPU matrix. With 0.4 wt% MXene incorporated, the WPU/Ti3C2 MXene composite coatings reach a lowest corrosion current of 2.143 × 10–6 A/cm2, a decrease of one order of magnitude compared with blank WPU (1.599 × 10–5 A/cm2) and own an excellent UV-blocking property (almost block the whole UV light).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Xie Y, Chen M, Xie D, Zhong L, Zhang X (2017) A fast, low temperature zinc phosphate coating on steel accelerated by graphene oxide. Corros Sci 128:1–8. https://doi.org/10.1016/j.corsci.2017.08.033

    Article  CAS  Google Scholar 

  2. Geethanjali R, Subhashini S (2016) Synthesis of water-soluble acryl terpolymers and their anticorrosion properties on mild steel in 1mol·L−1 HCl. Chin J Chem Eng 24:543–552. https://doi.org/10.1016/j.cjche.2015.11.019

    Article  CAS  Google Scholar 

  3. Qian B, Zheng Z, Michailids M, Fleck N, Bilton M, Song Y, Li G, Shchukin D (2019) Mussel-inspired self-healing coatings based on polydopamine-coated nanocontainers for corrosion protection. ACS Appl Mater Interfaces 11:10283–10291. https://doi.org/10.1021/acsami.8b21197

    Article  CAS  Google Scholar 

  4. Yang N, Yang T, Wang W, Chen H, Li W (2019) Polydopamine modified polyaniline-graphene oxide composite for enhancement of corrosion resistance. J Hazard Mater 377:142–151. https://doi.org/10.1016/j.jhazmat.2019.05.063

    Article  CAS  Google Scholar 

  5. Habibiyan A, Ramezanzadeh B, Mahdavian M, Bahlakeh G, Kasaeian M (2020) Rational assembly of mussel-inspired polydopamine (PDA)-Zn (II) complex nanospheres on graphene oxide framework tailored for robust self-healing anti-corrosion coatings application. Chem Eng J 391:123630. https://doi.org/10.1016/j.cej.2019.123630

    Article  CAS  Google Scholar 

  6. Asaldoust S, Ramezanzadeh B (2020) Synthesis and characterization of a high-quality nanocontainer based on benzimidazole-zinc phosphate (ZP-BIM) tailored graphene oxides; a facile approach to fabricating a smart self-healing anti-corrosion system. J Colloid Interface Sci 564:230–244. https://doi.org/10.1016/j.jcis.2019.12.122

    Article  CAS  Google Scholar 

  7. Huang H, Wang H, Xie Y, Dong D, Jiang X, Zhang X (2019) Incorporation of boron nitride nanosheets in zinc phosphate coatings on mild steel to enhance corrosion resistance. Surf Coat Technol 374:935–943. https://doi.org/10.1016/j.surfcoat.2019.06.082

    Article  CAS  Google Scholar 

  8. Taheri NN, Ramezanzadeh B, Mahdavian M (2019) Application of layer-by-layer assembled graphene oxide nanosheets/polyaniline/zinc cations for construction of an effective epoxy coating anti-corrosion system. J Alloys Compd 800:532–549. https://doi.org/10.1016/j.jallcom.2019.06.103

    Article  CAS  Google Scholar 

  9. Wang H, Guo R, Shen Y, Shao Y, Fei G, Zhu K (2019) Waterborne polyaniline-graft-alkyd for anticorrosion coating and comparison study with physical blend. Prog Org Coat 126:187–195. https://doi.org/10.1016/j.porgcoat.2018.10.013

    Article  CAS  Google Scholar 

  10. Wu Y, He Y, Zhou T, Chen C, Zhong F, Xia Y, Xie P, Zhang C (2020) Synergistic functionalization of h-BN by mechanical exfoliation and PEI chemical modification for enhancing the corrosion resistance of waterborne epoxy coating. Prog Org Coat 142:105541. https://doi.org/10.1016/j.porgcoat.2020.105541

    Article  CAS  Google Scholar 

  11. Huang H, Sheng X, Tian Y, Zhang L, Chen Y, Zhang X (2020) Two-dimensional nanomaterials for anticorrosive polymeric coatings: a review. Ind Eng Chem Res 59:15424–15446. https://doi.org/10.1021/acs.iecr.0c02876

    Article  CAS  Google Scholar 

  12. Li J, Gan L, Liu Y, Mateti S, Lei W, Chen Y, Yang J (2018) Boron nitride nanosheets reinforced waterborne polyurethane coatings for improving corrosion resistance and antifriction properties. Eur Polym J 104:57–63. https://doi.org/10.1016/j.eurpolymj.2018.04.042

    Article  CAS  Google Scholar 

  13. Haladu SA, Umoren SA, Ali SA, Solomon MM, Mohammed A-RI (2019) Synthesis, characterization and electrochemical evaluation of anticorrosion property of a tetrapolymer for carbon steel in strong acid media. Chin J Chem Eng 27:965–978. https://doi.org/10.1016/j.cjche.2018.07.015

    Article  CAS  Google Scholar 

  14. Cai K, Zuo S, Luo S, Yao C, Liu W, Ma J, Mao H, Li Z (2016) Preparation of polyaniline/graphene composites with excellent anti-corrosion properties and their application in waterborne polyurethane anticorrosive coatings. RSC Adv 6:95965–95972. https://doi.org/10.1039/C6RA19618G

    Article  CAS  Google Scholar 

  15. Mohammadi A, Barikani M, Doctorsafaei AH, Isfahani AP, Shams E, Ghalei B (2018) Aqueous dispersion of polyurethane nanocomposites based on calix[4]arenes modified graphene oxide nanosheets: preparation, characterization, and anti-corrosion properties. Chem Eng J 349:466–480. https://doi.org/10.1016/j.cej.2018.05.111

    Article  CAS  Google Scholar 

  16. Wang H, He Y, Fei G, Wang C, Shen Y, Zhu K, Sun L, Rang N, Guo D, Wallace GG (2019) Functionalizing graphene with titanate coupling agents as reinforcement for one-component waterborne poly(urethane-acrylate) anticorrosion coatings. Chem Eng J 359:331–343. https://doi.org/10.1016/j.cej.2018.11.133

    Article  CAS  Google Scholar 

  17. Huang T-C, Lai G-H, Li C-E, Tsai M-H, Wan P-Y, Chung Y-H, Lin M-H (2017) Advanced anti-corrosion coatings prepared from α-zirconium phosphate/polyurethane nanocomposites. RSC Adv 7:9908–9913. https://doi.org/10.1039/C6RA27588E

    Article  CAS  Google Scholar 

  18. Mo Q, Li W, Yang H, Gu F, Chen Q, Yang R (2019) Water resistance and corrosion protection properties of waterborne polyurethane coating enhanced by montmorillonite modified with Ce3+. Prog Org Coat 136:105213. https://doi.org/10.1016/j.porgcoat.2019.105213

    Article  CAS  Google Scholar 

  19. Javidparvar AA, Naderi R, Ramezanzadeh B (2019) Epoxy-polyamide nanocomposite coating with graphene oxide as cerium nanocontainer generating effective dual active/barrier corrosion protection. Compos B 172:363–375. https://doi.org/10.1016/j.compositesb.2019.05.055

    Article  CAS  Google Scholar 

  20. Ye Y, Zhang D, Liu T, Liu Z, Pu J, Liu W, Zhao H, Li X, Wang L (2019) Superior corrosion resistance and self-healable epoxy coating pigmented with silanzied trianiline-intercalated graphene. Carbon 142:164–176. https://doi.org/10.1016/j.carbon.2018.10.050

    Article  CAS  Google Scholar 

  21. Huang H, Li M, Tian Y, Xie Y, Sheng X, Jiang X, Zhang X (2020) Exfoliation and functionalization of α-zirconium phosphate in one pot for waterborne epoxy coatings with enhanced anticorrosion performance. Prog Org Coat 138:105390. https://doi.org/10.1016/j.porgcoat.2019.105390

    Article  CAS  Google Scholar 

  22. Xia Z, Liu G, Dong Y, Zhang Y (2019) Anticorrosive epoxy coatings based on polydopamine modified molybdenum disulfide. Prog Org Coat 133:154–160. https://doi.org/10.1016/j.porgcoat.2019.04.056

    Article  CAS  Google Scholar 

  23. Zhang C, He Y, Li F, Di H, Zhang L, Zhan Y (2016) h-BN decorated with Fe3O4 nanoparticles through mussel-inspired chemistry of dopamine for reinforcing anticorrosion performance of epoxy coatings. J Alloys Compd 685:743–751. https://doi.org/10.1016/j.jallcom.2016.06.220

    Article  CAS  Google Scholar 

  24. Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23:4248–4253. https://doi.org/10.1002/adma.201190147

    Article  CAS  Google Scholar 

  25. Huang H, Dong D, Li W, Zhang X, Zhang L, Chen Y, Sheng X, Lu X (2020) Synergistic effect of MXene on the flame retardancy and thermal degradation of intumescent flame retardant biodegradable poly (lactic acid) composites. Chin J Chem Eng 28:1981–1993. https://doi.org/10.1016/j.cjche.2020.04.014

    Article  Google Scholar 

  26. Sun R, Zhang HB, Liu J, Xie X, Yang R, Li Y, Hong S, Yu ZZ (2017) Highly conductive transition metal carbide/carbonitride (MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv Funct Mater 27:1702807. https://doi.org/10.1002/adfm.201702807

    Article  CAS  Google Scholar 

  27. Wang L, Chen L, Song P, Liang C, Lu Y, Qiu H, Zhang Y, Kong J, Gu J (2019) Fabrication on the annealed Ti3C2Tx MXene/Epoxy nanocomposites for electromagnetic interference shielding application. Compos B 171:111–118. https://doi.org/10.1016/j.compositesb.2019.04.050

    Article  CAS  Google Scholar 

  28. Yan H, Li W, Li H, Fan X, Zhu M (2019) Ti3C2 MXene nanosheets toward high-performance corrosion inhibitor for epoxy coating. Prog Org Coat 135:156–167. https://doi.org/10.1016/j.porgcoat.2019.06.013

    Article  CAS  Google Scholar 

  29. Zou Y, Fang L, Chen T, Sun M, Lu C, Xu Z (2018) Near-Infrared light and solar light activated self-healing epoxy coating having enhanced properties using MXene flakes as multifunctional fillers. Polymers 10:474. https://doi.org/10.3390/polym10050474

    Article  CAS  Google Scholar 

  30. Lin P, Xie J, He Y, Lu X, Li W, Fang J, Yan S, Zhang L, Sheng X, Chen Y (2020) MXene aerogel-based phase change materials toward solar energy conversion. Sol Energy Mater Sol Cells 206:110229. https://doi.org/10.1016/j.solmat.2019.110229

    Article  CAS  Google Scholar 

  31. Sheng X, Zhao Y, Zhang L, Lu X (2019) Properties of two-dimensional Ti3C2 MXene/thermoplastic polyurethane nanocomposites with effective reinforcement via melt blending. Compos Sci Technol 181:107710. https://doi.org/10.1016/j.compscitech.2019.107710

    Article  CAS  Google Scholar 

  32. Zeng W, Huang H, Song L, Jiang X, Zhang X (2020) A novel hydroxyl polyacrylate latex modified by OvPOSS and its application in two-component waterborne polyurethane coatings. J Coat Technol Res 17:181–191. https://doi.org/10.1007/s11998-019-00256-9

    Article  CAS  Google Scholar 

  33. Wang C, Sheng X, Xie D, Zhang X, Zhang H (2016) High-performance TiO2/polyacrylate nanocomposites with enhanced thermal and excellent UV-shielding properties. Prog Org Coat 101:597–603. https://doi.org/10.1016/j.porgcoat.2016.10.007

    Article  CAS  Google Scholar 

  34. Sheng X, Xie D, Wang C, Zhang X, Zhong L (2016) Synthesis and characterization of core/shell titanium dioxide nanoparticle/polyacrylate nanocomposite colloidal microspheres. Colloid Polym Sci 294:463–469. https://doi.org/10.1007/s00396-015-3807-1

    Article  CAS  Google Scholar 

  35. Riazi H, Anayee M, Hantanasirisakul K, Shamsabadi AA, Anasori B, Gogotsi Y, Soroush M (2020) Surface modification of a MXene by an aminosilane coupling agent. Adv Mater Interfaces 7:1902008. https://doi.org/10.1002/admi.201902008

    Article  CAS  Google Scholar 

  36. Quain E, Mathis TS, Kurra N, Maleski K, Van Aken KL, Alhabeb M, Alshareef HN, Gogotsi Y (2019) Direct writing of additive-free MXene-in-water ink for electronics and energy storage. Adv Mater Technol 4:1800256. https://doi.org/10.1002/admt.201800256

    Article  CAS  Google Scholar 

  37. Naguib M, Unocic RR, Armstrong BL, Nanda J (2015) Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes.” Dalton Trans 44:9353–9358. https://doi.org/10.1039/c5dt01247c

    Article  CAS  Google Scholar 

  38. Chen G, Guan X, Xu R, Tian J, He M, Shen W, Yang J (2016) Synthesis and characterization of UV-curable castor oil-based polyfunctional polyurethane acrylate via photo-click chemistry and isocyanate polyurethane reaction. Prog Org Coat 93:11–16. https://doi.org/10.1016/j.porgcoat.2015.12.015

    Article  CAS  Google Scholar 

  39. Lin P, Meng L, Huang Y, Liu L, Fan D (2015) Simultaneously functionalization and reduction of graphene oxide containing isocyanate groups. Appl Surf Sci 324:784–790. https://doi.org/10.1016/j.apsusc.2014.11.038

    Article  CAS  Google Scholar 

  40. Parhizkar N, Ramezanzadeh B, Shahrabi T (2018) Corrosion protection and adhesion properties of the epoxy coating applied on the steel substrate pre-treated by a sol-gel based silane coating filled with amino and isocyanate silane functionalized graphene oxide nanosheets. Appl Surf Sci 439:45–59. https://doi.org/10.1016/j.apsusc.2017.12.240

    Article  CAS  Google Scholar 

  41. Huang H, Du Z, Huang X, Jiang X, Zhang X (2020) Development of enhanced multiwalled carbon nanotube (MWCNT) conductive polymeric nanocomposites by using acidified derivative of MWCNT as dispersant. J Appl Phys 127:035501. https://doi.org/10.1063/1.5130651

    Article  CAS  Google Scholar 

  42. Cui J, Xu J, Li J, Qiu H, Zheng S, Yang J (2020) A crosslinkable graphene oxide in waterborne polyurethane anticorrosive coatings: experiments and simulation. Compos B 188:107889. https://doi.org/10.1016/j.compositesb.2020.107889

    Article  CAS  Google Scholar 

  43. Amrollahi S, Ramezanzadeh B, Yari H, Ramezanzadeh M, Mahdavian M (2019) Synthesis of polyaniline-modified graphene oxide for obtaining a high performance epoxy nanocomposite film with excellent UV blocking/anti-oxidant/anti-corrosion capabilities. Compos B 173:106804. https://doi.org/10.1016/j.compositesb.2019.05.015

    Article  CAS  Google Scholar 

  44. Karthika M, Chi H, Li T, Wang H, Thomas S (2019) Super-hydrophobic graphene oxide-azobenzene hybrids for improved hydrophobicity of polyurethane. Compos B 173:106978. https://doi.org/10.1016/j.compositesb.2019.106978

    Article  CAS  Google Scholar 

  45. Huang H, Huang X, Xie Y, Tian Y, Jiang X, Zhang X (2019) Fabrication of h-BN-rGO@PDA nanohybrids for composite coatings with enhanced anticorrosion performance. Prog Org Coat 130:124–131. https://doi.org/10.1016/j.porgcoat.2019.01.059

    Article  CAS  Google Scholar 

  46. Tian Y, Xie Y, Dai F, Huang H, Zhong L, Zhang X (2020) Ammonium-grafted graphene oxide for enhanced corrosion resistance of waterborne epoxy coatings. Surf Coat Technol 383:125227. https://doi.org/10.1016/j.surfcoat.2019.125227

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the National Natural Science Foundation of China (Grant No. 21908031). Y. C. acknowledges the support from Guangdong Special Support Program (Grant No. 2017TX04N371).

Author information

Authors and Affiliations

Authors

Contributions

Xinxin Sheng took part in methodology, validation, investigation, data curation, writing—original draft, writing—review and editing. Sihao Li involved in investigation, review and editing, writing—review and editing. Haowei Huang took part in writing—review and editing. Yanfeng Zhao involved in conceptualization. Ying Chen took part in resources, funding acquisition. Li Zhang took part in resources, funding acquisition. Delong Xie involved in resources, writing—review and editing, supervision, project administration.

Corresponding authors

Correspondence to Xinxin Sheng or Delong Xie.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 968 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, X., Li, S., Huang, H. et al. Anticorrosive and UV-blocking waterborne polyurethane composite coating containing novel two-dimensional Ti3C2 MXene nanosheets. J Mater Sci 56, 4212–4224 (2021). https://doi.org/10.1007/s10853-020-05525-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05525-2

Navigation