Skip to main content

Advertisement

Log in

The Efficiency of Normal Distribution in Statistical Characterization of the Experimentally Measured Strength for Ceramics

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

It has been assumed that the measured strength of ceramics follows a Weibull distribution. However, there is still no sound evidence to confirm this assumption. On the contrary, some studies have shown that other distributions such as normal distribution may describe more appropriately the measured strength data than Weibull distribution. In this paper, an extensive comparison between the efficiencies of normal and Weibull distributions in describing the strength variations was performed based on the analyses of 27 strength datasets, each containing 30 data measured on different ceramics. It was shown based on Anderson–Darling (A–D) test that, in most cases, normal distribution may give a satisfactory description for the data. The analysis results reveal that, at least for the small datasets generally used in laboratory evaluation, it seems to be unnecessary to perform a Weibull analysis because a simple normal distribution analysis is accurate enough for the statistical characterization of strength for the examined materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. D.G.S. Davies, The Statistical Approach to Engineering Design in Ceramics, Proc. Br. Ceram. Soc., 1973, 22, p 429–452

    Google Scholar 

  2. G. Quinn, Flexural Strength of Advanced Structural Ceramics: A Round Robin, J. Am. Ceram. Soc., 1990, 73, p 2374–2384

    CAS  Google Scholar 

  3. A.A. Griffith, The Phenomena of Rupture and Flow in Solids, Philo. Trans. R. Soc. Lond. A, 1921, 221, p 163–198

    Google Scholar 

  4. G.D. Quinn and R. Morrell, Design Data for Engineering Ceramics: A Review of the Flexure Test, J. Am. Ceram. Soc., 1991, 74, p 2037–2066

    CAS  Google Scholar 

  5. R.W. Rice, Grain Size and Porosity Dependence of Ceramic Fracture Energy and Toughness at 22°C, J. Mater. Sci., 1996, 31, p 1969–1983

    CAS  Google Scholar 

  6. Z. Zhang, X.M. Duan, B.F. Qiu, Z.H. Yang, D.L. Cai, P.G. He, D.C. Jia, and Y. Zhou, Preparation and Anisotropic Properties of Textured Structural Ceramics: A Review, J. Adv. Ceram., 2019, 8, p 289–332

    CAS  Google Scholar 

  7. T.A. Otitoju, P.U. Okoye, G.T. Chen, Y. Li, M.O. Okoye, and S.X. Li, Advanced Ceramic Components: Materials, Fabrication, and Applications, J. Ind. Eng. Chem., 2020, 85, p 34–65

    Google Scholar 

  8. R. Samuel, S. Chandrasekar, T.N. Farris, and R.H. Licht, Effect of Residual Stress on the Fracture Strength of Ground Ceramics, J. Am. Ceram. Soc., 1989, 72, p 1960–1966

    CAS  Google Scholar 

  9. M. Guazzato, M. Albakry, L. Quach, and M.V. Swain, Influence of Surface and Heat Treatments on the Flexural Strength of a Glass-Infiltrated Alumina/zirconia-Reinforced Dental Ceramic, Dent. Mater., 2005, 21, p 454–463

    CAS  Google Scholar 

  10. Z.P. Bazant, Size Effect on Structural Strength: A Review, Arch. Appl. Mech., 1999, 69, p 703–725

    Google Scholar 

  11. J. Lamon, Ceramic Reliability: Statistical Analysis of Multiaxial Failure using the Weibull Approach and the Multiaxial Elemental Strength Model, J. Am. Ceram. Soc., 1990, 73, p 2204–2212

    CAS  Google Scholar 

  12. W. Weibull, A Statistical Theory of the Strength of Materials, Proc. R. Swedish Inst. Eng. Res., 1939, 151, p 1–45

    Google Scholar 

  13. J.B. Quinn and G.D. Quinn, A Practical and Systematic Review of Weibull Statistics for Reporting Strength of Dental Materials, Dent. Mater., 2010, 26, p 135–147

    CAS  Google Scholar 

  14. R. Bermejo, P. Supancic, I. Kraleva, R. Morrell, and R. Danzer, Strength Reliability of 3D Low Temperature Co-Fired Multilayer Ceramics under Biaxial Loading, J. Eur. Ceram. Soc., 2011, 31, p 745–753

    CAS  Google Scholar 

  15. L. Collino and G.R. Carfagni, Flexural Strength of Glass-Ceramic for Structural Applications, J. Europ. Ceram. Soc., 2014, 34, p 2675–2685

    Google Scholar 

  16. R. Manivannan, I. Srikanth, A. Kumar, A. Kumar, and C. Subrahmanyam, Reliability Studies of Gelcast Fused Silica Between Organic and Inorganic Binder Systems, Int. J. Appl. Ceram. Technol., 2017, 14, p 795–802

    CAS  Google Scholar 

  17. E.B. Callaway and F.W. Zok, Strengths of Ceramic Fiber Bundles: Theory and Practice, J. Am. Ceram. Soc., 2017, 100, p 5306–5317

    CAS  Google Scholar 

  18. D.N. Boccaccini, H.L. Frandsen, S. Soprani, M. Cannio, T. Klemenso, V. Gil, and P.V. Hendriksen, Influence of Porosity on Mechanical Properties of Tetragonal Stabilized Zirconia, J. Eur. Ceram. Soc., 2018, 38, p 1720–1735

    CAS  Google Scholar 

  19. Y.Q. Lu, Z.Y. Mei, J.J. Zhang, S.S. Gao, X.Q. Yang, B. Dong, L. Yue, and H.Y. Yu, Flexural Strength and Weibull Analysis of Y-TZP Fabricated by Stereolithographic Additive Manufacturing and Subtractive Manufacturing, J. Eur. Ceram. Soc., 2020, 40, p 826–834

    CAS  Google Scholar 

  20. W. Weibull, A Statistical Distribution Function of Wide Applicability, J. Appl. Mech., 1951, 18, p 293–297

    Google Scholar 

  21. A. Dey, A.K. Mukhopadhyay, S. Gangadharan, M.K. Sinha, and D. Basu, Weibull Modulus of Nano-Hardness and Elastic Modulus of Hydroxyapatite Coating, J. Mater. Sci., 2009, 44, p 4911–4918

    CAS  Google Scholar 

  22. H.S. Nam, Statistical Analysis of Vickers Hardness and Toughness of Repeated Crack-Healing SiC Composite Ceramics Considering Economics, J. Ceram. Process. Res., 2019, 20, p 379–387

    Google Scholar 

  23. J.H. Gong, Indentation Toughness of Ceramics: A Statistical Analysis, Ceram. Int., 2002, 28, p 767–772

    CAS  Google Scholar 

  24. M. Elgueta, G. Diaz, S. Zamorano, and P. Kittl, On the Use of the Weibull and the Normal Cumulative Probability Models in Structural Design, Mater. Des., 2007, 28, p 2496–2499

    Google Scholar 

  25. W.L. Yao, J. Liu, T.B. Holland, L. Huang, Y.H. Xiong, J.M. Schoenung, and A.K. Mukherjee, Grain Size Dependence of Fracture Toughness for Fine Grained Alumina, Scr. Mater., 2011, 65, p 143–146

    CAS  Google Scholar 

  26. D. Coric, L. Curkovic, and M.M. Renjo, Statistical Analysis of Vickers Indentation Fracture Toughness of Y-TZP Ceramics, Trans. FAMENA, 2017, 41, p 1–16

    Google Scholar 

  27. F.C. Lorenzoni, L.M. Martins, N.R.F.A. Silva, P.G. Coelho, P.C. Guess, E.A. Bonfante, V.P. Thompson, and G. Bonfante, Fatigue Life and Failure Modes of Crowns Systems with a Modified Framework Design, J. Dent., 2010, 28, p 626–634

    Google Scholar 

  28. L.A. Bicalho, C.A.R.P. Baptista, R.C. Souza, C. Santos, K. Strecker, and M.J.R. Barboza, Fatigue and Subcritical Crack Growth in ZrO2-Bioglass Ceramics, Ceram. Int., 2013, 39, p 2405–2414

    CAS  Google Scholar 

  29. C. Neusel, H. Jelitto, D. Schmidt, R. Janssen, F. Felten, and G.A. Schneider, Thickness-Dependence of the Breakdown Strength: Analysis of the Dielectric and Mechanical Failure, J. Eur. Ceram. Soc., 2015, 35, p 113–123

    CAS  Google Scholar 

  30. B. Mieller, Influence of Test Procedure on Dielectric Breakdown Strength of Alumina, J. Adv. Ceram., 2019, 8, p 247–255

    CAS  Google Scholar 

  31. T. Zhang, Y.J. Lei, J. Yin, J.S. Du, and P. Yu, Effects of Pores on Dielectric Breakdown of Alumina Ceramics under AC Electric Field, Ceram. Int., 2019, 45, p 13951–13957

    CAS  Google Scholar 

  32. J. Schijve, A Normal-Distribution or a Weibull Distribution for Fatigue Lives, Fatigue Fract. Eng. Mater. Struct., 1993, 16, p 851–859

    Google Scholar 

  33. C. Lu, R. Danzer, and F.D. Fischer, Fracture Statistics of Brittle Materials: Weibull or Normal Distribution, Phys. Rev. E, 2002, 65, p 067102

    Google Scholar 

  34. B. Basu, D. Tiwari, D. Kundu, and R. Prasad, Is Weibull Distribution the Most Appropriate Statistical Strength Distribution for Brittle Materials?, Ceram. Int., 2009, 35, p 237–246

    CAS  Google Scholar 

  35. M. R’Mili, N. Godin, and J. Lamon, Flaw Strength Distributions and Statistical Parameters for Ceramic Fibers: The Normal Distribution, Phys. Rev. E, 2012, 85, p 051106

    Google Scholar 

  36. S. Nohut and C. Lu, Fracture Statistics of Dental Ceramics: Discrimination of Strength Distributions, Ceram. Int., 2012, 38, p 4979–4990

    CAS  Google Scholar 

  37. L. Gorjan and M. Ambrozic, Bending Strength of Alumina Ceramics: A Comparison of Weibull Statistics with Other Statistics Based on Very Large Experimental Data Set, J. Eur. Ceram. Soc., 2012, 32, p 1221–1227

    CAS  Google Scholar 

  38. B. Stawarczyk, M. Ozcan, C.H.F. Hammerle, and M. Roos, The Fracture Load and Failure Types of Veneered Anterior Zirconia Crowns: An Analysis of Normal and Weibull Distribution to Complete and Censored Data, Dent. Mater., 2012, 28, p 478–487

    CAS  Google Scholar 

  39. Y. Sakamoto, M. Ishiguro, and G. Kitagawa, Akaike Information Criterion Statistics, Reidel, Dordrecht, 1983

    Google Scholar 

  40. N. Lissart and J. Lamon, Statistical Analysis of Failure of SiC Fibres in the Presence of Bimodal Flaw Populations, J. Mater. Sci., 1997, 32, p 6107–6117

    CAS  Google Scholar 

  41. H. Peterllik and D. Loidl, Bimodal Strength Distributions and Flaw Populations of Ceramics and Fibres, Eng. Fract. Mech., 2001, 68, p 253–261

    Google Scholar 

  42. K. Kendall, N.M. Alford, S.R. Tan, and J.D. Birchall, Influence of Toughness on Weibull Modulus of Ceramic Bending Strength, J. Mater. Res., 1986, 1, p 120–123

    CAS  Google Scholar 

  43. M.J. Ready, C.L. Mccallen, P.D. Mcnamara, and B.R. Lawn, Correlations Between Flaw Tolerance and Reliability in Zirconia, J. Mater. Sci., 1993, 28, p 6748–6752

    Google Scholar 

  44. K. Duan, Y.W. Mai, and B. Cotterell, R-curve Effect on Strength and Reliability of Toughened Ceramic Materials, J. Mater. Sci., 1995, 30, p 1405–1408

    CAS  Google Scholar 

  45. W.H. Tuan and J.C. Kuo, Contribution of Residual Stress to the Strength of Abrasive Ground Alumina, J. Eur. Ceram. Soc., 1999, 19, p 1593–1597

    CAS  Google Scholar 

  46. H. Fischer, M. Hemelik, R. Telle, and R. Marx, Influence of Annealing Temperature on the Strength of Dental Glass Ceramic Materials, Dent. Mater., 2005, 21, p 671–677

    CAS  Google Scholar 

  47. J. Pascual, T. Lube, and R. Danzer, Fracture Statistics of Ceramic Laminates Strengthened by Compressive Residual Stresses, J. Eur. Ceram. Soc., 2008, 28, p 1551–1556

    CAS  Google Scholar 

  48. S.M. Wiederhorn and N.J. Tighe, Proof-Testing of Hot-Pressed Silicon Nitride, J. Mater. Sci., 1978, 13, p 1781–1793

    CAS  Google Scholar 

  49. T. Nojima, An Analysis of Weibull Distribution for Residual and Fracture Strength After Proof Testing of Ceramics, JSME Int. J. A, 1999, 42, p 414–420

    CAS  Google Scholar 

  50. E.C. Teixeiram, J.R. Piascik, B.R. Stoner, and J.Y. Thompson, Dynamic Fatigue and Strength Characterization of Three Ceramic Materials, J. Mater. Sci. Mater. Med., 2007, 18, p 1219–1224

    Google Scholar 

  51. R.H. Doremus, Fracture Statistics: A Comparison of the Normal, Weibull and Type-I Extreme Value Distributions, J. Appl. Phys., 1983, 54, p 193–198

    Google Scholar 

  52. A.K. Dey and D. Kundu, Discriminating Between the Weibull and Log-Normal Distributions for Type-II Censored Data, Statistics, 2012, 46, p 1097–1214

    Google Scholar 

  53. S. Goh, H.W. Kwon, and M.Y. Choi, Discriminating Between Weibull Distributions and Log-Normal Distributions Emerging in Branching Processes, J. Phys. A, 2014, 47, p 225101

    Google Scholar 

  54. A.H. Turkan and N. Calis, Comparison of Weibull and Normal Distributions for Bivariate Survival Data, Int. J. Appl. Math. Stat., 2017, 56, p 1–12

    Google Scholar 

  55. A. Khalili and K. Kromp, Statistical Properties of Weibull Estimators, J. Mater. Sci., 1991, 26, p 6741–6752

    Google Scholar 

  56. J.H. Gong and Y. Li, Relationship Between the Estimated Weibull Modulus and the Coefficient of Variation of the Measured Fracture Strength for Ceramics, J. Am. Ceram. Soc., 1999, 82, p 449–452

    CAS  Google Scholar 

  57. ISO14704: Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics): Test Method for Flexural Strength of Monolithic Ceramics at Room Temperature, 2016.

  58. Z. Jin, J. Ma, and L. Wang, Research of Weibull Statistics on the Bending Strength of Structural Ceramics, J. Chin. Ceram. Soc., 1990, 18, p 130–136 ((in Chinese))

    CAS  Google Scholar 

  59. EN 843-5: Advanced Technical Ceramics: Mechanical Properties of Monolithic Ceramics at Room Temperature, Part 5: statistical analysis, 2006.

  60. W.J. Yuan, H. Tang, Q. Zhi, and D. Zhang, Size Effects on Fracture Parameters of High Alumina Refractories, Mater. Res., 2018, 21, p e20180091

    CAS  Google Scholar 

  61. J. Lamon, Brittle Fracture and Damage of Brittle Materials and Composites: Statistical-Probabilistic Approaches, Elsevier, Oxford, 2016

    Google Scholar 

  62. Y.W. Bao, Y.C. Zhou, and H.B. Zhang, Investigation on Reliability of Nanolayer-Grained Ti3SiC2 via Weibull Statistics, J. Mater. Sci., 2007, 42, p 4470–4475

    CAS  Google Scholar 

  63. Y. Xu, L. Cheng, L. Zhang, D. Yan, and C. You, Optimization of Sample Number for Weibull Function of Brittle Materials Strength, Ceram. Int., 2001, 27, p 239–241

    CAS  Google Scholar 

  64. ISO 20501: Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics): Weibull Statistical for Strength Data, 2019.

  65. JIS R 1625: Weibull Statistics of Strength Data for Fine Ceramics, 1996.

  66. D.R. Bush, Designing Ceramic Components for Structural Applications, J. Mater. Eng. Perform., 1993, 2, p 851–862

    Google Scholar 

  67. Y. Katayama and Y. Hattori, Effects of Specimen Size on Strength of Sintered Silicon Nitride, J. Am. Ceram. Soc., 1982, 65, p 164–165

    Google Scholar 

  68. N. Guazzato, K. Proos, L. Quach, and M.V. Wain, Strength, Reliability and Mode of Fracture of Bilayered Porcelain/zirconia (Y-TZP) Dental Ceramics, Biomaterials, 2004, 25, p 5045–5052

    CAS  Google Scholar 

  69. R.F. Fonzar, M. Carrabba, M. Sedda, M. Ferrari, C. Goracci, and A. Vichi, Flexural Resistance of Heat-Pressed and CAD-CAM Lithium Disilicate with Different Translucencies, Dent. Mater., 2017, 22, p 63–70

    Google Scholar 

  70. F. Zhang, B.V. Meerbeek, and J. Vleugels, Importance of Tetragonal Phase in High-Translucent Partially Stabilized Zirconia for Dental Restorations, Dent. Mater., 2020, 36, p 491–500

    CAS  Google Scholar 

  71. J.H. Gong, A New Probability Index for Estimating Weibull Modulus for Ceramics with the Least-Square Method, J. Mater. Sci. Lett., 2000, 19, p 827–829

    CAS  Google Scholar 

  72. S. Nadarajah and S. Kotz, Comment on the Probability Indices, J. Mater. Sci., 2006, 41, p 6479–6480

    CAS  Google Scholar 

  73. R.B. D’Agostino, Goodness-of-Fit Techniques, Marcel Dekker, New York, 1986

    Google Scholar 

  74. M. Tiryakioglu, D. Hudak, and G. Okten, On Evaluating Weibull Fits to Mechanical Test Data, Mater. Sci. Eng., A, 2009, 527, p 397–399

    Google Scholar 

  75. X. Teng, H. Mae, and Y. Bai, Probability Characterization of Tensile Strength of an Aluminum Casting, Mater. Sci. Eng., A, 2010, 527, p 4169–4176

    Google Scholar 

  76. S. Nohut, Influence of Sample Size on Strength Distribution of Advanced Ceramics, Ceram. Int., 2014, 40, p 4285–4295

    CAS  Google Scholar 

  77. T.W. Anderson and D.A. Darling, A Test of Goodness of Fit, J. Am. Stat. Assoc., 1954, 49, p 765–769

    Google Scholar 

  78. B. Basu, J. Vleugels, and O.V. der Biest, Toughness Tailoring of Yttria-Doped Zirconia Ceramics, Mater. Sci. Eng., A, 2004, 380, p 215–221

    Google Scholar 

  79. C. Johnson, Fracture Statistics of Multiple Flaw Populations, Fracture Mechanics of Ceramics, Vol 5, R.C. Bradt, A.G. Evans, D.P.H. Hasselman, and F.F. Lange, Ed., Plenum, New York, 1983, p 365–386

    Google Scholar 

  80. B. Deng and D.Y. Jiang, Determination of the Weibull Parameters from the Mean Value and the Coefficient of Variation of the Measure Strength for Brittle Ceramics, J. Adv. Ceram., 2017, 6, p 149–156

    CAS  Google Scholar 

  81. P. Pittayachawan, A. McDonald, A. Petrie, and J.C. Knowles, The Biaxial Flexural Strength and Fatigue Property of Lava™ Y-TZP Dental Ceramic, Dent. Mater., 2007, 23, p 1018–1029

    CAS  Google Scholar 

  82. S.A. Rodrigues Junior, J.L. Ferracane, and A.D. Bona, Flexural Strength and Weibull Analysis of a Microhybrid and a Nanofill Composite Evaluated by 3- and 4-Point Bending Tests, Dent. Mater., 2008, 24, p 426–431

    CAS  Google Scholar 

  83. B. Deng, D.Y. Jiang, and J.H. Gong, Is a Three-Parameter Weibull Function Really Necessary for the Characterization of the Statistical Variation of the Strength of Brittle Ceramics?, J. Eur. Ceram. Soc., 2018, 38, p 2234–2242

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Yiwang Bao of China Building Materials Academy and Prof. Wenjie Yuan of Wuhan University of Science and Technology for providing the original strength of the datasets 17, 18 and 22, respectively. Thanks also to Prof. Jian Zhang of Shanghai Institute of Ceramics, Prof. Xuejian Liu of Shanghai Institute of Ceramics and Dr. Wenjie Si of Tsinghua University for providing the test samples for the present study. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianghong Gong.

Ethics declarations

Conflict of interest

The authors of this manuscript declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, J., Deng, B. & Jiang, D. The Efficiency of Normal Distribution in Statistical Characterization of the Experimentally Measured Strength for Ceramics. J. of Materi Eng and Perform 30, 42–55 (2021). https://doi.org/10.1007/s11665-020-05352-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05352-1

Keywords

Navigation