Skip to main content
Log in

Effect of Mo on the Microstructure and Superelasticity of Ti-Ni-Cu Shape Memory Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this paper, the microstructure and superelasticity of Ti(50−x)Ni44Cu6Mox (x = 0-2.5) alloys were studied. The main phase in Ti(50−x)Ni44Cu6Mox alloys at room temperature is B2 austenite. The martensite transformation finish temperatures of the 0Mo and 0.2Mo samples are approximately − 34.2 and − 45.4 °C, respectively, while the transformation temperature cannot be detected above − 50 °C for the samples with Mo contents greater than 0.2%. The content of Mo has little effect on the compressive strength of the Ti(50−x)Ni44Cu6Mox alloy, but the fracture strain decreases with increasing Mo content. The 0.6Mo sample shows elastic deformation characteristics and has the lowest fracture strain due to the precipitation of Ni-rich compounds. Cyclic compression tests with an increased and constant prestrain were adopted to study the superelasticity properties of the alloys. The residual stress can increase approximately 5-6% after 5 cycles when the prestrain increases from 2 to 10%, while the residual strain drops approximately 2-3% after 20 cycles when the prestrain is constant at 6%. In both experiments, the results show that the recoverable strain can be generally improved by substituting Mo for Ti in Ti(50−x)Ni44Cu6Mox alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y.X. Tong, A. Shuitcev, and Y.F. Zheng, Recent Development of TiNi-Based Shape Memory Alloys with High Cycle Stability and High Transformation Temperature, Adv. Eng. Mater., 2020, 22, p 1900496

    Article  CAS  Google Scholar 

  2. A. Ishida, M. Sato, and Z.Y. Gao, Properties and Applications of Ti-Ni-Cu Shape-Memory-Alloy Thin Films, J. Alloys Compd., 2011, 577S, p S184–S189

    Google Scholar 

  3. P. Salwa and T. Goryczka, Crystallization of Mechanically Alloyed Ni50Ti50 and Ti50Ni25Cu25 Shape Memory Alloys, JMEPEG, 2020, 29(5), p 2848–2852

    Article  CAS  Google Scholar 

  4. M. Ghadimi, M. Vanda, and M.A. Sourani, Nanocrystalline Ti-Ni-Cu Shape Memory Alloys: Metallurgical, Mechanical and Thermal Properties, Mater. Lett., 2015, 139, p 359–363

    Article  CAS  Google Scholar 

  5. J. Li, X.Y. Yi, K.S. Sun, B. Sun, W.H. Gao, H.Z. Wang, X.L. Meng, and W.L. Song, The Effect of Zr on the Transformation Behaviors, Microstructure and the Mechanical Properties of Ti-Ni-Cu Shape Memory Alloys, J. Alloys Compd., 2018, 747, p 348–353

    Article  CAS  Google Scholar 

  6. H. Li, X.L. Meng, and W. Cai, Microstructures, Martensitic Transformation and Shape Memory Behaviors of Aged Ti50.5Ni33.5Cu11.5Pd4.5 Alloys, J. Alloys Compd., 2019, 780, p 800–804

    Article  CAS  Google Scholar 

  7. H. Li, X.L. Meng, and W. Cai, Shape Memory Behaviors in a Ti50Ni33.5Cu12.5Pd4 Alloy with Near-Zero Thermal Hysteresis, J. Alloys Compd., 2018, 765, p 166–170

    Article  CAS  Google Scholar 

  8. K.S. Sun, X.Y. Yi, B. Sun, W.H. Gao, H.Z. Wang, X.L. Meng, W. Cai, and L.C. Zhao, The Effect of Hf on the Microstructure, Transformation Behaviors and the Mechanical Properties of Ti-Ni-Cu Shape Memory Alloys, J. Alloys Compd., 2019, 772, p 603–611

    Article  CAS  Google Scholar 

  9. X.Y. Yi, H.Z. Wang, W.H. Gao, B. Sun, X.Y. Niu, X.L. Meng, J. Li, Z.Y. Gao, W. Cai, and L.C. Zhao, Control of Microstructural Characteristics and Martensitic Transformation Behavior of Ti-Ni-Cu Alloys by Pt Doping, J. Alloys Compd., 2019, 802, p 181–189

    Article  CAS  Google Scholar 

  10. Y.X. Tong, H.L. Gu, R.D. James, W.Y. Qi, A.V. Shuitcev, and L. Li, Novel TiNiCuNb Shape Memory Alloys with Excellent Thermal Cycling Stability, J. Alloys Compd., 2019, 782, p 343–347

    Article  CAS  Google Scholar 

  11. D.Q. Jiang, Y.N. Liu, W.L. Liu, L.X. Song, X.H. Jiang, H. Yang, and L.S. Cui, Microstructure, Transformation Behavior and Mechanical Properties of a (Ti50Ni38Cu12)93Nb7 Alloy, Mater. Sci. Eng. A, 2015, 627, p 348–350

    Article  CAS  Google Scholar 

  12. G.C. Wang, K.P. Hu, Y.X. Tong, B. Tian, F. Chen, L. Li, Y.F. Zheng, and Z.Y. Gao, Influence of Nb Content on Martensitic Transformation and Mechanical Properties of TiNiCuNb Shape Memory Alloys, Intermetallics, 2016, 72, p 30–35

    Article  CAS  Google Scholar 

  13. G.W. Zhao, J. Chen, C. Ding, D. Fang, C.H. Huang, and X.C. Ye, Effect of Yttrium on the Microstructure, Phase Transformation and Superelasticity of a Ti-Ni-Cu Shape Memory Alloy, Vacuum, 2020, 177, p 109381

    Article  CAS  Google Scholar 

  14. A. Nespoli, E. Villa, and F. Passaretti, Effect of Yttrium on Microstructure, Thermal Properties and Damping Capacity of Ni41Ti50Cu9 Alloy, J. Alloys Compd., 2015, 653, p 234–242

    Article  CAS  Google Scholar 

  15. J.Y. Jang, S.J. Chun, E. Choi, Y.N. Liu, H. Yang, and T.H. Nam, Transformation Behavior and Shape Memory Characteristics of Thermomechanically Treated Ti-(45x)Ni-5Cu-xV (at.%) Alloys, Mater. Res. Bull., 2012, 47, p 2939–2942

    Article  CAS  Google Scholar 

  16. Y.M. Im, Y. Mi, M.S. Jeon, Y.H. Kim, M.K.Kim Lee, and T.H. Nam, Transformation Behavior of Ti-(45-x)Ni-5Cu-xCr (at.%) (x = 0.5-2.0) Shape Memory Alloys, Trans. Electr. Electron. Mater., 2011, 12(1), p 28–31

    Article  Google Scholar 

  17. Y.M. Jeon, M.G. Kim, M.S. Kim, Y.H. Lee, Y.M. Im, and T.H. Nam, The B2-B19-B19′ Transformation in Ti-(45-x)Ni-5Cu-xMn (at.%) (x = 0.5-2.0) Alloys, Trans. Electr. Electron. Mater., 2011, 12(1), p 24–27

    Article  Google Scholar 

  18. C.A. Yu, G.B. Cho, T.Y. Kim, Y.J. Lee, and T.H. Nam, The Three-Stage B2-R-B19-19′ and Shape Memory Characteristics in Ti-Ni-Cu-Fe Alloys, Mater. Sci. Eng. A, 2006, 438–440, p 500–503

    Article  Google Scholar 

  19. H. Chen, F. Xiao, X. Liang, Z.X. Li, X.J. Jin, and T. Fukuda, Stable and Large Superelasticity and Elastocaloric Effect in Nanocrystalline Ti-44Ni-5Cu-1Al (at.%) Alloy, Acta Mater., 2018, 158, p 330–339

    Article  CAS  Google Scholar 

  20. Y.W. Kim, B.G. Jo, S. Young, and T.H. Nam, Shape Memory Characteristics of Porous Ti-Ni-Mo Alloys Prepared by Solid State Sintering, Mater. Res. Bull., 2016, 82, p 45–49

    Article  Google Scholar 

  21. Y.W. Kim, Y.J. Lee, and T.Y. Nam, Shape Memory Characteristics of Ti-Ni-Mo Alloys Sintered by Sparks Plasma Sintering, J. Alloys Compd., 2013, 577S, p S205–S209

    Article  Google Scholar 

  22. T.H. Nam, J.P. Noh, S.G. Hur, J.S. Kim, and S.B. Kang, Phase Transformation Behavior and Shape Memory Characteristics of Ti-Ni-Cu-Mo Alloys, Mater. Trans., 2002, 43, p 802–808

    Article  CAS  Google Scholar 

  23. T.H. Nam, D.W. Jung, J.H. Kim, Y.N. Liu, K.W. Kim, and S.S. Jeong, Superelasticity and Corrosion Behavior of 50Ti-(45-X)Ni-5Cu-XMo (at.%) Alloys, J. Intell. Mater. Syst. Struct., 2006, 17, p 1135–1140

    Article  CAS  Google Scholar 

  24. G.B. Cho, T.Y. Kim, C.A. Yu, Y.N. Liu, and T.H. Nam, Transformation Behavior of Ti-Ni-Cu-Mo Alloys, J. Alloys Compd., 2008, 449, p 129–133

    Article  CAS  Google Scholar 

  25. T.X. Zhao, G.Z. Kang, C. Yu, and Q.H. Kan, Experimental Investigation of the Cyclic Degradation of the One-Way Shape Memory Effect of NiTi Alloys, Int. J. Miner. Metall. Mater., 2019, 26(12), p 1539–1550

    Article  CAS  Google Scholar 

  26. S.Y. Yang, L.P. Guo, X.Y. Qing, S.H. Hong, J.X. Zhang, M.P. Li, C.P. Wang, and X.J. Liu, Excellent Shape Recovery Characteristics of Cu-Al-Mn-Fe Shape Memory Single Crystal, J. Mater. Sci. Technol., 2020, 57, p 43–50

    Article  Google Scholar 

  27. X. Xie, Q.H. Kan, G.Z. Kang, F.C. Lu, and K.J. Chen, Observation on Rate-Dependent Cyclic Transformation Domain of Super-Elastic NiTi Shape Memory Alloy, Mater. Sci. Eng. A, 2016, 671, p 32–47

    Article  CAS  Google Scholar 

  28. H.G. Armaki, A.C. Leff, M.L. Taheri, J. Dahal, M. Kamarajugadda, and K.S. Kumar, Cyclic Compression Response of Micropillars Extracted from Textured Nanocrystalline NiTi Thin-Walled Tubes, Acta Mater., 2017, 136, p 134–147

    Article  Google Scholar 

  29. P. Hua, K.J. Chu, F.Z. Ren, and Q.P. Sun, Cyclic Phase Transformation Behavior of Nanocrystalline NiTi at Microscale, Acta Mater., 2020, 185, p 507–517

    Article  CAS  Google Scholar 

  30. S. Wang, K. Tsuchiya, L. Wang, and M. Umemoto, Martensitic Stabilization and Defects Induced by Deformation in TiNi Shape Memory Alloys, Int. J. Miner. Metall. Mater., 2011, 18(1), p 66–69

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We acknowledge the financial supports from the Hubei provincial Department of Education (No. B2020024); the Opening Fund of Yichang Key Laboratory of Graphite Additive Manufacturing (No. YKLGAM202002, No. YKLGAM202005); the National Natural Science Foundation of China (No. 51604162).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangwei Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, G., Chen, J., Fang, D. et al. Effect of Mo on the Microstructure and Superelasticity of Ti-Ni-Cu Shape Memory Alloys. J. of Materi Eng and Perform 30, 617–626 (2021). https://doi.org/10.1007/s11665-020-05348-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05348-x

Keywords

Navigation