Skip to main content
Log in

A Review of Fine Blanking: Influence of Die Design and Process Parameters on Edge Quality

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Conventional blanking is the single-stroke shearing of closed contour profiles. However, the blanked pieces have inherent errors like fractured cut surface and blank dishing necessitating further sizing and/or finishing operations. Fine blanking is a more precise version of the blanking operation with lesser errors such that post-forming steps required will be minimal. Thus, it is an ideal candidate for manufacturing precision machine components. This review paper starts with the introduction to the process. Then, studies aimed at the analysis of fine blanking tooling and process parameters and their effect on fine-blanked part characteristics are presented. Inferences from studies on the design of equipment for fine blanking, deformation mechanics involved and the fine blanking performance of different materials are also discussed. The use of finite element simulation studies to understand the process better has also been determined. Various reported strain measurement techniques are then discussed. The recent improvement in techniques like in situ digital image correlation enables accurate experimental measurement of strain in the shear zone which can be used to validate the findings from FE simulations. Fine blanking process modifications that aimed at cost reduction or improvement in product quality are summarized as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39

Similar content being viewed by others

References

  1. K. Lange, Handbook of Metal Forming, McGraw-Hill Book Company, New York, USA, 1996

    Google Scholar 

  2. V. Boljanovic, Sheet Metal Forming Processes and Die Design, Industrial Press, New York, USA, 2004

    Google Scholar 

  3. Partech Corporation, “Fineblanking (Precision Stamping),” Partech Corporation, 2016, www.partecchfineblanking.com. Accessed 23 May 2016.

  4. F. Schiess, “The Fine Blanking Process,” (Germany), German Patent and Trade Mark Office, 1922.

  5. R. Christian, Feintool Magazine, Corporate Publishing Services GmbH, Düsseldorf, Germany, 2013

    Google Scholar 

  6. R. Johnson, B. Fogg, and A.W. Chisholm, An Investigation into the Fine-Blanking Process, Proc. Ninth Int. Mach. Tool Des. Res. Conf., 1968, 9, p 397–410

    Google Scholar 

  7. Z.H. Chen, C.Y. Tang, T.C. Lee, and L.C. Chan, Numerical Simulation of Fine-Blanking Process Using a Mixed Finite Element Method, Int. J. Mech. Sci., 2002, 44, p 1309–1333

    Google Scholar 

  8. Y.C. Leung, L.C.Ã. Chan, C.Y. Tang, and T.C. Lee, An Effective Process of Strain Measurement for Severe and Localized Plastic Deformation, Int. J. Mach. Tools Manuf., 2004, 44(7–8), p 669–676

    Google Scholar 

  9. X.L. Xie, Z. Zhen, Y.U. Song, S.G. Gu, C. Jun, and M.-H.H. Li, Mechanism of Localized Severe Plastic Deformation and Damage Fracture in Fine-Blanking Using Mixed Displacement and Pressure FEM, Trans. Nonferrous Met. Soc. China, 2006, 16(5), p 1021–1028

    Google Scholar 

  10. K. Lange, The Potential of the Fine Blanking Technique, Feintool AG, Lyss, Switzerland, 1978

    Google Scholar 

  11. W. Konig, F. Rotter, and A. Krapoth, Feinschneiden Dicker Bleche-Experiment Und Theorie, Industrie-Anzeiger, 1984, 106(14), p 24–28

    Google Scholar 

  12. T.C. Lee, L.C. Chan, and B.J. Wu, Further Investigation of the Fine-Blanking Process Employing Large Deformation Theory, Matrix, 1997, 66, p 258–263

    Google Scholar 

  13. T.C. Lee, L.C. Chan, and B.J. Wu, Straining Behaviour in Blanking Process—Fine Blanking vs Conventional Blanking, J. Mater. Process. Tech., 1995, 48(1–4), p 105–111

    Google Scholar 

  14. T.C. Lee, L.C. Chan, and P.F. Zheng, Application of the Finite-Element Deformation Method in the Fine Blanking Process, J. Mater. Process. Technol., 1997, 63(1–3), p 744–749. https://doi.org/10.1016/S0924-0136(96)02717-3

    Article  Google Scholar 

  15. I. Aoki and T. Takahashi, Material Flow Analysis on Shearing Process by Applying Fourier Phase Correlation Method—Analysis of Piercing and Fine-Blanking, J. Mater. Process. Technol., 2003, 134(1), p 45–52

    Google Scholar 

  16. Z.H.H. Chen, L.C.C. Chan, T.C.C. Lee, and C.Y.Y. Tang, An Investigation on the Formation and Propagation of Shear Band in Fine-Blanking Process, J. Mater. Process. Technol., 2003, 138(1–3), p 610–614. https://doi.org/10.1016/S0924-0136(03)00141-9

    Article  Google Scholar 

  17. M.D. Gram and R.H. Wagoner, Fineblanking of High Strength Steels: Control of Material Properties for Tool Life, J. Mater. Process. Technol., 2011, 211(4), p 717–728. https://doi.org/10.1016/j.jmatprotec.2010.12.005

    Article  CAS  Google Scholar 

  18. P.J.J. Zhao, Z.H.H. Chen, and C.F.F. Dong, Experimental and Numerical Analysis of Micromechanical Damage for DP600 Steel in Fine-Blanking Process, J. Mater. Process. Technol., 2016, 236, p 16–25. https://doi.org/10.1016/j.jmatprotec.2016.05.002

    Article  CAS  Google Scholar 

  19. Schuler, “Metal Forming Handbook,” (Springer, Berlin, Germany), 1998.

  20. J. Haack and F. Birzer, “Fine-Blanking Practical Handbook”, Revised, Feintool AG, Lyss, Switzerland, 1984

    Google Scholar 

  21. G. Fang, P. Zeng, and L. Lou, Finite Element Simulation of the Effect of Clearance on the Forming Quality in the Blanking Process, J. Mater. Process. Technol., 2002, 122(2–3), p 249–254

    CAS  Google Scholar 

  22. T.S. Kwak, Y.J. Kim, and W.B. Bae, Finite Element Analysis on the Effect of Die Clearance on Shear Planes in Fine Blanking, J. Mater. Process. Technol., 2002, 130–131, p 462–468

    Google Scholar 

  23. J. Majerniková and E. Spišák, The Effect of Punch-Die Clearance on Blanked Edge Quality in Fine Blanking of Steel Sheets, Zesz. Nauk. Politech. Rzesz. Mech., 2013, 85(288), p 479–488

    Google Scholar 

  24. E. Spišák, J. Majerníková, and E. Spišáková, The Influence of Punch-Die Clearance on Blanked Edge Quality in Fine Blanking of Automotive Sheets, Mater. Sci. Forum, 2015, 818, p 264–267

    Google Scholar 

  25. L. Yan-tao, L. Yun-hua, D. Wen-zheng, and C. Lei, Numerical Simulation of Fine Blanking on Plane Blankholder, Int. Conf. Digit. Manuf. Autom., 2010, 1, p 22–25

    Google Scholar 

  26. J.D. Kim, Y.M. Heo, and S.T. Won, A Study on the Clearance Design of Fine Blanking Tool for Al Special Parts with Various Inner Corner Shapes, Appl. Mech. Mater., 2013, 2013, p 288–293

    Google Scholar 

  27. J.D. Kim, Y.M. Heo, and S.T. Won, A Study on the Clearance Decision of Fine Blanking Tool for Eco-Al Special Parts with Various Inner Corner Shapes, Appl. Mech. Mater., 2013, 2013, p 31–35

    Google Scholar 

  28. J. Kim, H. Kim, Y. Heo, and S. Chang, A Study on Die Roll Height of Special Automobile Seat Recliner Gear According to Die Chamfer Shape in Fine Blanking Tool, Appl. Mech. Mater., 2012, 121–126, p 3694–3699

    Google Scholar 

  29. T. Tanaka, S. Hagihara, Y. Tadano, S. Yoshimura, T. Inada, T. Mori, and K. Fuchiwaki, Analysis of Shear Droop on Cut Surface of High-Tensile-Strength Steel in Fine-Blanking Process, Mater. Trans., 2011, 52(3), p 447–451. https://doi.org/10.2320/matertrans.P-M2010828

    Article  CAS  Google Scholar 

  30. M. Sasada and T. Togashi, Measurement of Rollover in Double-Sided Shearing Using Image Processing and Influence of Clearance, Procedia Eng., 2014, 81, p 1139–1144. https://doi.org/10.1016/j.proeng.2014.10.248

    Article  Google Scholar 

  31. F. Klocke, K. Sweeney, H.-W. Raedt, M. Zimmermann, V. Bäcker, and H. Wegner, Improved Tool Design for Fine Blanking through the Application of Numerical Modeling Techniques, J. Mater. Process. Technol., 2001, 115(1), p 70–75. https://doi.org/10.1016/S0924-0136(01)00771-3

    Article  Google Scholar 

  32. C. Zhu, F. Li, and Z. Gu, 3D Numerical Simulation and Optimization of Processing Parameters in Fine Blanking of Back Plate of Brake, Adv. Mater. Res., 2011, 291–294, p 440–443. https://doi.org/10.4028/www.scientific.net/AMR.291-294.440

    Article  Google Scholar 

  33. K. Mori, Y. Abe, Y. Kidoma, and P. Kadarno, Slight Clearance Punching of Ultra-High Strength Steel Sheets Using Punch Having Small Round Edge, Int. J. Mach. Tools Manuf., 2013, 65, p 41–46. https://doi.org/10.1016/j.ijmachtools.2012.09.005

    Article  Google Scholar 

  34. F. Klocke, A. Shirobokov, D. Trauth, and P. Mattfeld, Deep Rolling of Fine Blanking Punch Edges: Numerical and Experimental Investigation of a Novel Deep Rolling Tool for Filleting of Cylindrical Punches, Int. J. Mater. Form., 2016, 9(4), p 489–498. https://doi.org/10.1007/s12289-015-1235-x

    Article  Google Scholar 

  35. T. Maeda and T. Nakagawa, Experimental Investigation on Fine Blanking, J. Japan Soc. Tech. Plast., 1968, 9, p 92

    Google Scholar 

  36. J. Kim, H. Kim, Y. Heo, and S. Chang, A Study on the Effect of V-Ring Position on the Die Roll Height in Fine Blanking for Special Automobile Seat Recliner Gear, Adv. Mater. Res., 2012, 383–390, p 7122–7127

    Google Scholar 

  37. T.S. Kwak, Y.J. Kim, M.K. Seo, and W.B. Bae, The Effect of V-Ring Indenter on the Sheared Surface in the Fine-Blanking Process of Pawl, J. Mater. Process. Technol., 2003, 143–144(1), p 656–661. https://doi.org/10.1016/S0924-0136(03)00311-X

    Article  Google Scholar 

  38. F. Djavanroodi, A. Pirgholi, and E. Derakhshani, FEM and ANN Analysis in Fine-Blanking Process, Mater. Manuf. Process., 2010, 25(8), p 864–872. https://doi.org/10.1080/10426910903367444

    Article  CAS  Google Scholar 

  39. S. Thipprakmas, Finite-Element Analysis of V-Ring Indenter Mechanism in Fine-Blanking Process, Mater. Des., 2009, 30(3), p 526–531

    CAS  Google Scholar 

  40. J.-P. Wang, A Novel Fine-Blanking Approach, Int. J. Adv. Manuf. Technol., 2015, 78(5–8), p 1015–1019. https://doi.org/10.1007/s00170-014-6701-y

    Article  Google Scholar 

  41. C.J. Su, X.H. Dong, S.M. Guo, Q.L. Li, and T.T. Li, Research on Parameters Optimization of Bilateral Ring Gear Blank-Holder in Thick-Plate Fine Blanking, Frat. ed Integrita Strutt., 2014, 30, p 502–514. https://doi.org/10.3221/IGF-ESIS.30.61

    Article  Google Scholar 

  42. F. Zhou, H. Mao, Y. Liu, and L. Hua, Parameters Design of Discontinuous Dot Indenter in Fine Blanking Process with Different Thickness Workpiece, Key Eng. Mater., 2016, 716, p 762–769

    Google Scholar 

  43. F. Yin, H. Mao, L. Hua, and Z. Gu, Back Propagation Neural Network Based Calculation Model for Predicting Wear of Fine-Blanking Die during Its Whole Lifetime, Comput. Mater. Sci., 2012, 59, p 140–151. https://doi.org/10.1016/j.commatsci.2012.03.008

    Article  Google Scholar 

  44. F. Yin, H.J. Mao, L. Hua, and Z.Q. Gu, Investigation of Die Wear during Fine-Blanking Process of a Kind of Automobile Synchronizer Slipper by FEM and Experiments, Adv. Mater. Res., 2011, 314–316, p 643–652. https://doi.org/10.4028/www.scientific.net/AMR.314-316.643

    Article  Google Scholar 

  45. G. Claus, M. Weber, and D. Matthias, Increase of Lifetime for Fine Blanking Tools, Procedia Eng., 2017, 2017, p 45–52. https://doi.org/10.1016/j.proeng.2017.04.009

    Article  Google Scholar 

  46. Y.C. Leung, L.C. Chan, C.H. Cheng, and T.C. Lee, The Effects of Tool Geometry Change on Shearing Edge Finish in Fine-Blanking of Different Materials, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2003, 217(8), p 1057–1062

    CAS  Google Scholar 

  47. W. Kollment, P.O. Leary, M. Harker, T. Klünsner, S. Eck, P. O’Leary, M. Harker, T. Klünsner, and S. Eck, “Force and Acoustic Emission Measurements for Condition Monitoring of Fine Blanking Tools,” IEEE International Instrumentation and Measurement Technology Conference (I2MTC), (Houston, USA), IEEE, 2018, p May 14–17.

  48. F. Birzer, “Materials for a New Generation of Parts,” International Feintool Fineblanking Symposium, (Lyss, Switzerland), 1984, p 13–20.

  49. T. Klünsner, F. Zielbauer, S. Marsoner, M. Deller, M. Morstein, and C. Mitterer, Influence of Surface Topography on Early Stages on Steel Galling of Coated WC-Co Hard Metals, Int. J. Refract. Met. Hard Mater., 2016, 57, p 24–30. https://doi.org/10.1016/j.ijrmhm.2016.02.002

    Article  CAS  Google Scholar 

  50. Deutsche Edelstahlwerke GmbH, “Selecting Materials for Punching and Forming Tools and the Heat Treatment Thereof,” (Witten, Germany), 2013, www.dew-stahl.com. Accessed 20 March 2008.

  51. F. Klocke and H.W. Raedt, Formulation and Testing of Optimised Coating Properties with Regard to Tribological Performance in Cold Forging and Fine Blanking Applications, Int. J. Refract. Met. Hard Mater., 2001, 19(4–6), p 495–505

    CAS  Google Scholar 

  52. C. Cao, X. Zhang, C. Dong, and X. Zha, Effect of Annealing on Properties of the TiN & TiAlN Coatings Deposited on Powder Metallurgy High Speed Steel (S790), 2014, 478, p 1397–1402.

  53. V. Leskovsek, B. Ule, and A. Rodic, The Influence of Fracture Toughness on the Fine Blanking Tools Life, Mater. Manuf. Process., 1997, 12(1), p 71–82

    CAS  Google Scholar 

  54. V. Leskovšek and B. Ule, Improved Vacuum Heat-Treatment for Fine-Blanking Tools from High-Speed Steel M2, J. Mater. Process. Technol., 1998, 82(1–3), p 89–94

    Google Scholar 

  55. A. Molinari, M. Pellizzari, S. Gialanella, G. Straffelini, and K.H. Stiasny, Effect of Deep Cryogenic Treatment on the Mechanical Properties of Tool Steels, J. Mater. Process. Technol., 2001, 118(1), p 350–355. https://doi.org/10.1016/S0924-0136(01)00973-6

    Article  CAS  Google Scholar 

  56. U. Aravind, U. Chakkingal, and P. Venugopal, Investigation of a Modified Fine Piercing Process on Extra Deep Drawing Grade Steel, J. Mater. Eng. Perform., 2019, 28, p 7789–7803. https://doi.org/10.1007/s11665-019-04509-x

    Article  CAS  Google Scholar 

  57. K. Kondo and H. Suzuki, Research on the Accuracy of Sheared Products by Different Working Principles in Precision Shearing, J. Mater. Process. Technol., 1996, 56(1), p 70–77

    Google Scholar 

  58. U. Aravind, C. Uday, and P. Venugopal, Modified Fine Blanking of Cam-Shaped Profile Using a Double-Action Hydraulic Press, Mater. Manuf. Process., 2019, 34(6), p 670–680. https://doi.org/10.1080/10426914.2019.1566614

    Article  CAS  Google Scholar 

  59. L. Chan, T. Lee, B. Wu, and W. Cheung, Experimental Study on the Shearing Behaviour of Fine-Blanking versus Bar Cropping, J. Mater. Process. Technol., 1998, 80–81, p 126–130. https://doi.org/10.1016/S0924-0136(98)00137-X

    Article  Google Scholar 

  60. C.K.K. Lee and Y.C.C. Kim, A Study Of The Die Roll Height Of SHP-1 And SCP-1 Materials In The Fine Blanking Process, Arch. Metall. Mater., 2015, 60(2), p 1397–1402. https://doi.org/10.1515/amm-2015-0139

    Article  CAS  Google Scholar 

  61. J. Lan, J. Hu, C. Song, L. Hua, and Y. Zhao, “Modeling and Optimization of a 10000kN Fine Blanking Press Frame,” International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE), 2011, (Nanjing, China), 2011, p 8353–8357.

  62. X. Zhao, Y. Liu, L. Hua, and H. Mao, Finite Element Analysis and Topology Optimization of a 12000kN Fine Blanking Press Frame, Struct. Multidiscip. Optim., 2016, 54(2), p 375–389. https://doi.org/10.1007/s00158-016-1407-4

    Article  Google Scholar 

  63. Z. Xu, Y. Liu, L. Hua, X. Zhao, and X. Wang, Energy Improvement of Fineblanking Press by Valve-Pump Combined Controlled Hydraulic System with Multiple Accumulators, J. Clean. Prod., 2020, 257, p 120505. https://doi.org/10.1016/j.jclepro.2020.120505

    Article  Google Scholar 

  64. C. Garconnet, Effective Applications of the Fine Blanking Technique.—II, Sheet Met. Ind., 1982, 59(2), p 158–161

    Google Scholar 

  65. Y.H. Seo, B.K. Kim, and H.D. Son, Application of Fine Blanking to the Manufacture of a Sprocket with Stainless Steel Sheet, Key Eng. Mater., 2004, 2004, p 1665–1670

    Google Scholar 

  66. U. Aravind, C.K. Gopalakrishnan, U. Chakkingal, and P. Venugopal, Fine Piercing with Rubber for Counter Force in a Double Action Hydraulic Press, Trans. Indian Inst. Met., 2015, 68(2), p 235–242. https://doi.org/10.1007/s12666-015-0577-x

    Article  Google Scholar 

  67. U. Aravind, C.K. Gopalakrishnan, U. Chakkingal, and P. Venugopal, The Effect of Using Rubber for Applying Counter Force in Fine of Blanking of AISI, 304 Stainless Steel, Procedia Eng., 2017, 207, p 1523–1527. https://doi.org/10.1016/j.proeng.2017.10.1072

    Article  CAS  Google Scholar 

  68. K. Nohara, S. Sato, K. Okumura, and H. Sasaki, Fine-Blanking Performance of Non-Magnetic High Manganese Cryogenic Steel and Its Application to Superconducting Dipole Magnet, Cryogenics (Guildf), 1994, 34, p 477–480

    CAS  Google Scholar 

  69. W. Wieckowski, P. Lacki, and J. Adamus, Modelling of Fine Blanking Process of the Aluminium Sheets, Key Eng. Mater., 2011, 473, p 290–297. https://doi.org/10.4028/www.scientific.net/KEM.473.290

    Article  Google Scholar 

  70. D. Česnik, J. Rozman, and M. Bizjak, Influence of Sheet Metal on Fine-Blanking Process, Mater. Manuf. Process., 2009, 24(7–8), p 832–836

    Google Scholar 

  71. G. Baskaran, S. Gowri, and R. Krishnamurthy, Study on Vital Static Properties of Fine Blanking of GFRP Composites with That of Conventional Drilling, Int. J. Adv. Manuf. Technol., 2010, 50(5–8), p 659–666

    Google Scholar 

  72. L.F. Lin, G.C. Wang, S.T. Fan, Y.X. Zhang, L.I.N. Li-feng, W. Gui-cheng, F.A.N. Shu-tian, Z. Yu-xin, and K.W.- Fine-blanking, “Fine-Blanking Die Wear and Its Effect on Product Edge Quality,” RI World Congress on Software Engineering (WCSE 2009), (San Francisco, USA), International Association of Engineers (IAENG), 2009, p October 20–22.

  73. S. Thipprakmas, C. Chanchay, N. Hanwach, W. Wongjan, and K. Vichitjarusgul, Investigation on the Increasing Material Hardness on Fineblanked Sprocket, Adv. Mater. Res., 2010, 83–86, p 1099–1106

    Google Scholar 

  74. S. Thipprakmas, Improving Wear Resistance of Sprocket Parts Using a Fine-Blanking Process, Wear, 2011, 271(9–10), p 2396–2401. https://doi.org/10.1016/j.wear.2010.12.015

    Article  CAS  Google Scholar 

  75. W.F. Fan and Z.M. Zhang, “Study on Working Hardening for the Sheet with Different Hardening Index by Fine-Blanking with Negative Clearance,” Materials Science Forum, 2012, p 365–370.

  76. R. Ding, W. Wang, F. Tang, Y. Zhou, J. Guo, J. Duan, and L. Yan, The Effect of Crack Propagation on the Quality of Fineblanking Surface of Cold-Rolled Steel Sheet Detected by PVDF Film Stress Sensors, Int. J. Adv. Manuf. Technol., 2018, 99, p 1615–1625

    Google Scholar 

  77. D. Česnik, V. Bratuš, B. Kosec, and M. Bizjak, Distortion of Ring Type Parts during Fine-Blanking, Metalurgija-Zagreb, 2012, 51(2), p 157

    Google Scholar 

  78. J. Stahl, D. Müller, T. Tobie, R. Golle, W. Volk, and K. Stahl, Residual Stresses in Parts Manufactured by Near-Net-Shape-Blanking, Prod. Eng., 2019, 13(2), p 181–188. https://doi.org/10.1007/s11740-018-0865-5

    Article  Google Scholar 

  79. H. Mao, S. Li, Y. Liu, and L. Hua, An Investigation on the Microstructure of the Fine-Blanked Sprocket, Int. J. Adv. Manuf. Technol., 2017, 90(9–12), p 3171–3185

    Google Scholar 

  80. Y. Liu, L. Hua, H. Mao, and W. Feng, Finite Element Simulation of Effect of Part Shape on Forming Quality in Fine-Blanking Process, Procedia Eng., 2014, 81, p 1108–1113

    Google Scholar 

  81. K. Sinram, A. Grafen, W. Janzon, and K. Werber, The Influence of Fine Blanking on the Magnetic Properties of Soft Magnetic Steel, IEEE Trans. Magn., 1988, 24(2), p 839–842

    Google Scholar 

  82. J.C. Nagtegaal and N. Rebelo, On the Development of a General Purpose Finite Element Program for Analysis of Forming Processes, Int. J. Numer. Methods Eng., 1988, 25(1), p 113–131

    Google Scholar 

  83. J.C. Simo, Numerical Analysis and Simulation of Plasticity, Elsevier, Amsterdam, 1998

    Google Scholar 

  84. R. Johnston, B. Fogg, and A.W.J. Chisholm, “An Investigation into the Fine Blanking Process,” 9th international machine tool design research conference. Pergamon Press, 1968, p 397–410.

  85. J.S. Gunasekera and R.M. Hobbs, “Stable Shear Separation in Fine Blanking,” Fracture at Work, The Fourth Tewksbury Symposium on Fracture, (Melbourne), University of Melbourne, 1979, p 10.

  86. J. Morreale, J.-L.J.-L.L. Marchand, and F.R.R. Oustau, Development of a Numerical Code Based on the Slip-Line Field Method: Application to the Fine-Blanking Process, J. Mater. Process. Technol., 1992, 31(3), p 393–411

    Google Scholar 

  87. W. Kubli, M. Maurer, and J. Reissner, The Use of FE Process Simulation in Tool and Machine Optimization for Fine Blanking, Adv. Met. Form. Mach., 1989, 1989, p 369–377

    Google Scholar 

  88. Z.H. Chen, C.Y. Tang, and T.C. Lee, Large Deformation Finite Element Analysis of Strain Localization in Fine-Blanking Process, Met. Mater., 1998, 4(3), p 529–532

    CAS  Google Scholar 

  89. Z.H.H. Chen, C.Y.Y. Tang, T.C.C. Lee, and L.C.C. Chan, A Study of Strain Localization in the Fine-Blanking Process Using the Large Deformation Finite Element Method, J. Mater. Process. Technol., 1998, 86(1–3), p 163–167

    Google Scholar 

  90. M. Samuel, FEM Simulations and Experimental Analysis of Parameters of Influence in the Blanking Process, J. Mater. Process. Technol., 1998, 84(1–3), p 97–106. https://doi.org/10.1016/S0924-0136(98)00083-1

    Article  Google Scholar 

  91. R. Hambli, Finite Element Simulation of Fine Blanking Processes Using a Pressure-Dependent Damage Model, J. Mater. Process. Technol., 2001, 116(2–3), p 252–264. https://doi.org/10.1016/S0924-0136(01)01009-3

    Article  Google Scholar 

  92. R. Hambli, Finite Element Model Fracture Prediction during Sheet-Metal Blanking Processes, Eng. Fract. Mech., 2001, 68(3), p 365–378. https://doi.org/10.1016/S0013-7944(00)00106-5

    Article  Google Scholar 

  93. Z.H. Chen, C.Y. Tang, and T.C. Lee, An Investigation of Tearing Failure in Fine-Blanking Process Using Coupled Thermo-Mechanical Method, Int. J. Mach. Tools Manuf., 2004, 44(2–3), p 155–165. https://doi.org/10.1016/j.ijmachtools.2003.10.010

    Article  Google Scholar 

  94. S. Thipprakmas, M. Jin, and M. Murakawa, An Investigation of Material Flow Analysis in Fineblanking Process, J. Mater. Process. Technol., 2007, 192–193, p 237–242. https://doi.org/10.1016/j.jmatprotec.2007.04.065

    Article  CAS  Google Scholar 

  95. S. Thipprakmas, M. Jin, K. Tomokazu, Y. Katsuhiro, and M. Murakawa, Prediction of Fineblanked Surface Characteristics Using the Finite Element Method (FEM), J. Mater. Process. Technol., 2008, 198(1–3), p 391–398. https://doi.org/10.1016/j.jmatprotec.2007.07.027

    Article  Google Scholar 

  96. L.C.C. Chan, Y.C.C. Leung, T.C.C. Lee, J.P.P. Fan, and C.Y.Y. Tang, Numerical Simulation for Fine-Blanking—A New Approach, Mater. Sci. Eng. A, 2004, 364(1–2), p 207–215. https://doi.org/10.1016/j.msea.2003.08.034

    Article  CAS  Google Scholar 

  97. J. Stanke, D. Trauth, A. Feuerhack, F. Klocke, H.D. Purnomo, and K.D. Hartomo, Setup of a Parameterized FE Model for the Die Roll Prediction in Fine Blanking Using Artificial Neural Networks, J. Phys. Conf. Ser., 2017, 896(1), p 1–8

    Google Scholar 

  98. J. Stanke, M. Unterberg, D. Trauth, and T. Bergs, Development of a Hybrid DLT Cloud Architecture for the Automated Use of Finite Element Simulation as a Service for Fine Blanking, Int. J. Adv. Manuf. Technol., 2020, 108(11), p 3717–3724. https://doi.org/10.1007/s00170-020-05567-5

    Article  Google Scholar 

  99. Y.C. Leung, L.C. Chan, C.Y. Tang, and T.C. Lee, Re-Etched Grids for Large-Strain Measurement in Fine-Blanking, J. Strain Anal. Eng. Des., 2004, 39(5), p 423–436

    Google Scholar 

  100. R. Hambli, Comparison between Lemaitre and Gurson Damage Models in Crack Growth Simulation during Blanking Process, Int. J. Mech. Sci., 2001, 43(12), p 2769–2790

    Google Scholar 

  101. J. Lemaitre, Coupled Elasto-Plasticity and Damage Constitutive Equations, Comput. Methods Appl. Mech. Eng., 1985, 51(1–3), p 31–49

    Google Scholar 

  102. A.L. Gurson, Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part 1—Yield Criteria and Flow Rules for Porous Ductile Media, J. Eng. Mater. Technol. Trans. ASME, 1977, 99(1), p 2–15

    Google Scholar 

  103. J.R.R. Rice and D.M.M. Tracey, On the Ductile Enlargement of Voids in Triaxial Stress Fields, J. Mech. Phys. Solids, 1969, 17(3), p 201–217

    Google Scholar 

  104. M.G. Cockcroft and D.J. Latham, Ductility and the Workability of Metals, J. Inst. Met., 1968, 96, p 33–39

    CAS  Google Scholar 

  105. B.P.P. Gouveia, J.M. Rodrigues, and P.A. Martins, Ductile Fracture in Metalworking: Experimental and Theoretical Research, J. Mater. Process. Technol., 2000, 101(1–3), p 52–63. https://doi.org/10.1016/S0924-0136(99)00449-5

    Article  Google Scholar 

  106. Y. Li and T. Wierzbicki, Prediction of Plane Strain Fracture of AHSS Sheets with Post-Initiation Softening, Int. J. Solids Struct., 2010, 47(17), p 2316–2327. https://doi.org/10.1016/j.ijsolstr.2010.04.028

    Article  CAS  Google Scholar 

  107. N. Manopulo, L. Tong, and P. Hora, An ALE Based FE Formulation for the 3D Numerical Simulation of Fineblanking Processes, AIP Conf. Proc., 2010, 1252(1), p 1168–1175. https://doi.org/10.1063/1.3457514

    Article  Google Scholar 

  108. Z. Zhao, X.C. Zhuang, and X.L. Xie, An Improved Ductile Fracture Criterion for Fine-Blanking Process, J. Shanghai Jiaotong Univ., 2008, 13 E(6), p 702–706

    Google Scholar 

  109. F.A. McClintock, A Criterion for Ductile Fracture by the Growth of Holes, J. Appl. Mech., 1968, 35, p 363–371

    Google Scholar 

  110. M. Ayada, T. Higashino, and K. Mori, Central Bursting in Extrusion of Inhomogeneous Materials, Adv. Technol. Plast., 1987, 1, p 553–558

    Google Scholar 

  111. Q. Chen, Y. Gan, and J. Du, Numerical Simulation and Optimization of Processing Parameters for Fine-Blanking of FPG, Appl. Mech. Mater., 2012, 101–102, p 475–478

    Google Scholar 

  112. H. Wang, Cam Fine Blanking Technology and Die Design, Procedia Eng., 2011, 15, p 137–141. https://doi.org/10.1016/j.proeng.2011.08.028

    Article  Google Scholar 

  113. A. Long, R. Ge, Y. Zhang, and L. Pan, Numerical Simulation and Parameter Optimization of Cam ’ s Fine Blanking Process, Adv. Mater. Res., 2012, 396–398, p 134–139

    Google Scholar 

  114. J.D. Kim, H.K. Kim, Y.M. Heo, and S.H. Chang, A Study on the Relation between Die Roll Height and Die Chamfer Shape in Fine Blanking for Special Gear, Adv. Mater. Res., 2011, 320, p 92–96. https://doi.org/10.4028/www.scientific.net/AMR.320.92

    Article  Google Scholar 

  115. X.Y. Li, C.D. Zhu, and Y.C. Zhu, “Fine Blanking Technology Optimization of Front End Cover of Timing System for Compressed,” Materials Science Forum, 2016, p 67–72.

  116. H. Du and S.M. Ding, The Contrast Research of the Finite Element Simulation for Ordinary and Fine Blanking with Negative Clearance, Mater. Sci. Forum, 2008, 575–578, p 316–321

    Google Scholar 

  117. W.F. Fan and J.H. Li, An Investigation on the Damage of AISI-1045 and AISI-1025 Steels in Fine-Blanking with Negative Clearance, Mater. Sci. Eng. A, 2009, 499(1–2), p 248–251. https://doi.org/10.1016/j.msea.2007.11.108

    Article  CAS  Google Scholar 

  118. J.H. Li, W.F. Fan, and Z.M. Zhang, Study on Microstructure Character in the Deformable Regions of AISI-1045 Steel Fine Blanking with Negative Clearance, Mater. Sci. Forum, 2009, 628–629, p 541–546

    Google Scholar 

  119. S.J. Qin, L. Yang, and J.G. Peng, Research on Fine Blanking Process with Stepped-Edge Punch, Appl. Mech. Mater., 2009, 16, p 495–499

    Google Scholar 

  120. S.J. Qin, L. Yang, and J.G. Peng, “Research on Fine Blanking Process with Stepped - Edge Punch for Complex Flange Parts,” International Conference on Mechanic Automation and Control Engineering 2010, (Wuhan, China), MACE 2010, 2010, p June 26–28.

  121. X.H. Huang, H. Xiang, X.C. Zhuang, and Z. Zhao, Improvement of Die-Roll Quality in Compound Fine-Blanking Forming Process, Adv. Mater. Res., 2011, 337, p 236–241. https://doi.org/10.4028/www.scientific.net/AMR.337.236

    Article  CAS  Google Scholar 

  122. H. Du, W.F. Fan, and Z.M. Zhang, Comparative Study of the Process Fracture between Fine-Blanking with Negative Clearance and Conventional Blanking, Adv. Mater. Res., 2010, 101, p 191–194

    Google Scholar 

  123. H. Du and Z.M. Zhang, Qualitative Analysis and Study the Workpiece Shearing Surface Quality of Fine-Blanking with Negative Clearance, Mater. Sci. Forum, 2012, 697–698, p 371–376

    Google Scholar 

  124. W.F. Fan and F. Li, Study on Blanking Force of Fine-Blanking with Negative Clearance and Common Blanking for AISI-1045 through Simulation and Experiment Methods, Mater. Sci. Forum, 2012, 704–705, p 1175–1179

    Google Scholar 

  125. M. Murakawa, M. Suzuki, T. Shionome, F. Komuro, A. Harai, A. Matsumoto, and N. Koga, Precision Piercing and Blanking of Ultrahigh-Strength Steel Sheets, Procedia Eng., 2014, 81, p 1114–1120. https://doi.org/10.1016/j.proeng.2014.10.219

    Article  CAS  Google Scholar 

  126. S.S. Kim, C.S. Han, and Y. Lee, Development of a New Burr-Free Hydro-Mechanical Punching, J. Mater. Process. Technol., 2005, 163, p 524–529

    Google Scholar 

  127. J.-P. Wang, G.-M. Huang, C.-C. Chen, Y.-C. Ye, and T.-T. Chen, Investigation of the Shear-Zone Length in Fine Hydromechanical Blanking, Int. J. Adv. Manuf. Technol., 2013, 68(9–12), p 2761–2769. https://doi.org/10.1007/s00170-013-4879-z

    Article  Google Scholar 

  128. G.-M. Huang, J.-P. Wang, T.-T. Chen, C.-L. Chen, and M.-H. Xu, Optimal Design for the Fluid Cavity Shape in Hydromechanical Fine Blanking, Int. J. Adv. Manuf. Technol., 2014, 78(1–4), p 153–160. https://doi.org/10.1007/s00170-014-6591-z

    Article  Google Scholar 

  129. F. Klocke, M. Zimmermann, V. Backer, H. Wegner, V. Bäcker, and H. Wegner, “Finite Element Simulation of an Analogy Process for the Fine Blanking of Helical Gears,” International Symposium on Assembly and Manufacturing, ISAM 2011, (Tampere, Finland), IEEE, 2011, p 25–27 May.

  130. S. Yang, Y. Song, and M. Zhang, Effects of Parameters on Rotational Fine Blanking of Helical Gears, J. Cent. South Univ., 2014, 21(1), p 50–57. https://doi.org/10.1007/s11771-014-1914-7

    Article  Google Scholar 

  131. A. Feuerhack, D. Trauth, P. Mattfeld, and F. Klocke, Fine Blanking of Helical Gears, 60 Excellent Inventions in Metal Forming, A.E. Tekkaya, W. Homberg, and A. Brosius, Ed., Springer Berlin Heidelberg, Berlin, Heidelberg, 2015, p 187–192 https://doi.org/10.1007/978-3-662-46312-3_29

    Chapter  Google Scholar 

  132. W. Xia, H. Mao, L. Hua, and Y. Liu, Numerical Study on the Comparison of Deformation Characteristics during the Fine Blanking Process of Spur Gears and Helical Gear, Key Eng. Mater., 2015, 639, p 559–566

    Google Scholar 

  133. B. Tang, Y. Liu, and H. Mao, Investigation of a Novel Modified Die Design for Fine-Blanking Process to Reduce the Die-Roll Size, Procedia Eng., 2017, 207, p 1546–1551. https://doi.org/10.1016/j.proeng.2017.10.1076

    Article  Google Scholar 

  134. Y. Liu, T. Cheng, L. Hua, and H. Mao, Research on the Effect of Ultrasonic Vibration on the Roll-over during the Fine Blanking Process, J. Mech. Sci. Technol., 2017, 31(2), p 835–843

    Google Scholar 

  135. S.F. Golovashchenko, A Study on Trimming of Aluminum Autobody Sheet and Development of a New Robust Process Eliminating Burrs and Slivers, Int. J. Mech. Sci., 2006, 48(12), p 1384–1400

    Google Scholar 

  136. M. Shahsavan and M. Sedighi, “An Innovative Experimental Setup for Laboratory Tests of Fine Blanking Process,” Advanced Materials Research, 2013, p 567–571.

  137. D. Ľudmila, D. Branislav, and S. Emil, Analysis of Some Aspects of Fine Blanking Process, Mechanika, 2013, 85, p 119–127

    Google Scholar 

Download references

Acknowledgements

Financial support from the Center of Excellence in Steel Technology, IIT Madras (supported by the Ministry of Steel, Government of India), is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Aravind.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aravind, U., Chakkingal, U. & Venugopal, P. A Review of Fine Blanking: Influence of Die Design and Process Parameters on Edge Quality. J. of Materi Eng and Perform 30, 1–32 (2021). https://doi.org/10.1007/s11665-020-05339-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05339-y

Keywords

Navigation