Skip to main content
Log in

Corrosion Resistance of Aluminum-Copper Alloys with Different Grain Structures

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Electrochemical studies and microstructure analysis of directionally solidified hypoeutectic and eutectic aluminum-copper alloys were performed. Optical and scanning electron microscopy studies of corroded specimens with columnar and equiaxed microstructures in 0.1 M, 0.5 M, and 1 M NaCl solutions were conducted. Low-rate potential scanning and alternating current (AC) electrode impedance measurements were conducted to study the corrosion resistance of four aluminum-copper alloys. The concentration of Cu in the alloys proved to be a key factor in the corrosion resistance of the Al-Cu alloys, which controlled the fraction of α and θ phases and the morphological distribution of these phases. The addition of Cu provides cathodic sites that increase adjacent anodic activity and higher corrosion susceptibility of the Al-Cu alloys, as compared with pure Al. Arise in the Cu amount that is linked to an increased concentration of the Al2Cu intermetallic or theta phase results in a higher susceptibility to corrosion for the studied alloys. A microstructural morphology related to a decreased area of contact between the α-phase and the Al2Cu intermetallic phase enhances the corrosion resistance of the Al-Cu alloys. For the Al-1wt.%Cu alloy increasing the content of Cl produces a beneficial result related to a more resistive passive film. For the rest of the studied alloys with nobler corrosion potentials, the increase in Cl results in a decrease in their corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Z.S. Smialowska, Pitting Corrosion of Aluminum, Corros. Sci., 1999, 41, p 1743–1767. https://doi.org/10.1016/j.corsci.2011.11.010

    Article  CAS  Google Scholar 

  2. M.A. Amin, S.S. Abd El Rehim, S.O. Moussa, and A.S. Ellithy, Pitting Corrosion of Al and Al-Cu Clloys by ClO4 Ions in Neutral Sulphate Solutions, Electrochim. Acta, 2008, 53, p 5644–5652. https://doi.org/10.1016/j.electacta.2008.03.010

    Article  CAS  Google Scholar 

  3. K.A. Yasakau, M.L. Zheludkevich, and M.G.S. Ferreira, Role of Intermetallics in Corrosion of Aluminum Alloys. Smart Corrosion Protection, Elsevier Ltd., Amsterdam, 2018, https://doi.org/10.1016/b978-0-85709-346-2.00015-7

    Book  Google Scholar 

  4. A. Boag, R.J. Taylor, T.H. Muster, N. Goodman, D. McCulloch, C. Ryan, B. Rout, D. Jamieson, and A.E. Hughes, Stable Pit Formation on AA2024-T3 in a NaCl Environment, Corros. Sci., 2010, 52, p 90–103. https://doi.org/10.1016/j.corsci.2009.08.043

    Article  CAS  Google Scholar 

  5. K. Zhou, B. Wang, Y. Zhao, and J. Liu, Corrosion and Electrochemical Behaviors of 7A09 Al-Zn–Mg–Cu Alloy in Chloride Aqueous Solution, Trans. Nonferrous Met. Soc. China, 2015, 25, p 2509–2515. https://doi.org/10.1016/S1003-6326(15)63869-9

    Article  CAS  Google Scholar 

  6. R. Arrabal, B. Mingo, A. Pardo, M. Mohedano, E. Matykina, and I. Rodríguez, Pitting Corrosion of Rheocast A356 Aluminium Alloy in 3.5wt.% NaCl Solution, Corros. Sci., 2013, 73, p 342–355. https://doi.org/10.1016/j.corsci.2013.04.023

    Article  CAS  Google Scholar 

  7. X. Hui Zhao, Y. Zuo, J. Mao Zhao, J. Ping Xiong, and Y. Ming Tang, A Study on the Self-Sealing Process of Anodic Films on Aluminum by EIS, Surf. Coatings Technol., 2006, 200, p 6846–6853. https://doi.org/10.1016/j.surfcoat.2005.10.031

    Article  CAS  Google Scholar 

  8. X. Wang, J. Wang, and C. Fu, Characterization of Pitting Corrosion of 7A60 Aluminum Alloy by EN and EIS Techniques, Trans. Nonferrous Met. Soc. China, 2014, 24, p 3907–3916. https://doi.org/10.1016/S1003-6326(14)63550-0

    Article  CAS  Google Scholar 

  9. W.R. Osório, L.C. Peixoto, R. Garcia, and A. Garcia, Corrosion Behavior of Hypoeutectic Al-Cu Alloys in H2SO4 and NaCl Solutions, Acta Metall. Sin. (English Lett.), 2009, 22, p 241–246. https://doi.org/10.1016/S1006-7191(08)60095-2

    Article  CAS  Google Scholar 

  10. A. Banu, M. Marcu, O. Radovici, C. Pirvu, and M. Vasilescu, Electrodissolution Studies of Three Aluminum Alloys in Acid, Neutral and Alkaline Solutions, Rev. Roum. Chim., 2006, 51, p 193–198

    CAS  Google Scholar 

  11. I.L. Muller and J.R. Galvele, Pitting Potential of High Purity Binary Aluminium Alloys-I. AlCu alloys. Pitting and Intergranular Corrosion, Corros. Sci., 1977, 17, p 179–193. https://doi.org/10.1016/0010-938X(77)90044-0

    Article  CAS  Google Scholar 

  12. Y. Kim, R.G. Buchheit, and P.G. Kotula, Effect of Alloyed Cu on Localized Corrosion Susceptibility of Al-Cu Solid Solution Alloys: Surface characterization by XPS and STEM, Electrochim. Acta, 2010, 55, p 7367–7375. https://doi.org/10.1016/j.electacta.2010.06.069

    Article  CAS  Google Scholar 

  13. K.A. Yasakau, M.L. Zheludkevich, and M.G.S. Ferreira, Corrosion and Corrosion Protection of Aluminum Alloys, Elsevier, 2018, https://doi.org/10.1016/B978-0-12-409547-2.13870-3

    Article  Google Scholar 

  14. A.S. Román, C.M. Méndez, C.E. Schvezov, A.E. Ares, Shape Casting: 5th International Symposium 2014, in: Shape Cast. TMS 2014, pp. 301–308. https://doi.org/10.1002/9781118888100

  15. A.E. Ares, L.M. Gassa, C.M. Méndez, C.E. Schvezov, Corrosión Electroquímica de las Aleaciones Al-Cu en Solución de Cloruro de Sodio, in: Nales Del 11° Congr. Binacional Metal. y Mater., 2011

  16. A.S. Román, C.M. Méndez, and A.E. Ares, Aleaciones Al-Cu: Estructuras de Solidificaciòn y Comportamiento Electroquìmico, An. AFA., 2014, 25, p 57–62. https://doi.org/10.31527/analesafa.2014.25.2.57

    Article  Google Scholar 

  17. W.R. Osório, J.E. Spinelli, I.L. Ferreira, and A. Garcia, The roles of Macrosegregation and of Dendritic Array Spacings on the Electrochemical Behavior of an Al-4.5 wt% Cu Alloy, Electrochim. Acta., 2007, 52, p 3265–3273. https://doi.org/10.1016/j.electacta.2006.10.004

    Article  CAS  Google Scholar 

  18. N. Birbilis and R.G. Buchheit, Electrochemical Characteristics of Intermetallic Phases in Aluminum Alloys, J. Electrochem. Soc., 2005, 152, p B140. https://doi.org/10.1149/1.1869984

    Article  CAS  Google Scholar 

  19. A.C. Vieira, A.M. Pinto, L.A. Rocha, and S. Mischler, Effect of Al2Cu Precipitates Size and Mass Transport on the Polarisation Behaviour of Age-Hardened Al-Si-Cu-Mg Alloys in 0.05 M NaCl, Electrochim. Acta., 2011, 56, p 3821–3828. https://doi.org/10.1016/j.electacta.2011.02.044

    Article  CAS  Google Scholar 

  20. A.S. Román, C.M. Méndez, C. Schvezov, A.E. Ares, Electrochemical Properties of Al-Cu Alloys in NaCl Solutions, in TMS 2015, Characterization of Minerals, Metals, and Materials 2015, 2015, pp. 727–734. https://doi.org/10.1007/978-3-319-48191-3_92

  21. A.E. Ares, L.M. Gassa, C.E. Schvezov, S.F. Gueijman, Relationship between Structure and Properties of Al-Cu Alloys, in: Shape Cast. 4th International Symposium (TMS, 2011), pp. 207–214. https://doi.org/10.1002/9781118062050.ch25

  22. W.R. Osório, J.E. Spinelli, C.M.A. Freire, M.B. Cardona, and A. Garcia, The Roles of Al2Cu and of Dendritic Refinement on Surface Corrosion Resistance of Hypoeutectic Al-Cu Alloys Immersed in H2SO4, J. Alloys Compd., 2007, 443, p 87–93. https://doi.org/10.1016/j.jallcom.2006.10.010

    Article  CAS  Google Scholar 

  23. A.S. Román, C.M. Méndez, and A.E. Ares, Corrosion Resistance of Al-Cu Alloys in Function of the Microstructure, Mater. Sci. Forum, 2014, 786, p 100–107. https://doi.org/10.4028/www.scientific.net/MSF.783-786.100

    Article  CAS  Google Scholar 

  24. A.S. Román, C.M. Méndez, A.E. Ares, Comportamiento Electroquímico de las Aleaciones Al-Cu en Soluciones 1 M y 0,5 M de NaCl, in SAM/CONAMET, 2014

  25. J.A. Spittle, Columnar-to-Equiaxed Grain Transition in as Solidified Alloys, Int. Mater. Rev., 2006, https://doi.org/10.1179/174328006X102493

    Article  Google Scholar 

  26. A.E. Ares and C.E. Schvezov, Solidification Parameters during the Columnar-to-Equiaxed Transition in Lead-Tin Alloys, Metall. Mater. Trans. A., 2000, 31, p 1611–1625. https://doi.org/10.1007/s11661-000-0171-6

    Article  Google Scholar 

  27. A.E. Ares and C.E. Schvezov, Influence of Solidification Thermal Parameters on the Columnar-to-Equiaxed Transition of Aluminum-Zinc and Zinc-Aluminum Alloys, Metall. Mater. Trans. A, 2007, 38, p 1485–1499. https://doi.org/10.1007/s11661-007-9111-z

    Article  CAS  Google Scholar 

  28. A.E. Ares, L.M. Gassa, S.F. Gueijman, and C.E. Schvezov, Correlation Between Thermal Parameters, Structures, Dendritic Spacing and Corrosion Behavior of Zn-Al Alloys with Columnar to Equiaxed Transition, J. Cryst. Growth, 2008, 310, p 1355–1361. https://doi.org/10.1016/j.jcrysgro.2007.11.169

    Article  CAS  Google Scholar 

  29. S.F. Gueijman, C.E. Schvezov, and A.E. Ares, Vertical and Horizontal Directional Solidification of Zn-Al and Zn-Ag Diluted Alloys, Mater. Trans., 2010, 51, p 1861–1870. https://doi.org/10.2320/matertrans.M2010036

    Article  CAS  Google Scholar 

  30. D.B. Carvalho, A.L. Moreira, D.J. Moutinho, J.M. Filho, O.L. Rocha, and J.E. Spinelli, The Columnar to Equiaxed Transition of Horizontal Unsteady-State Directionally Solidified Al-Si alloys, Mater. Res., 2013, 17, p 498–510. https://doi.org/10.1590/S1516-14392014005000015

    Article  CAS  Google Scholar 

  31. A.E. Ares, S.F. Gueijman, and C.E. Schvezov, An Experimental Investigation of the Columnar-to-Equiaxed Grain Transition in Aluminum-Copper Hypoeutectic and Eutectic Alloys, J. Cryst. Growth, 2010, 312, p 2154–2170. https://doi.org/10.1016/j.jcrysgro.2010.04.040

    Article  CAS  Google Scholar 

  32. C. M. Rodriguez, Relación entre la Microestructura y la Microdureza de las Aleaciones Al-Cu Solidificadas Direccionalmente, Mg. Thesis, National University of San Martín (2013) http://www.isabato.edu.ar/tesis/rodriguez-mm-2013/

  33. G. Petzow, Metallographic Etching, 2nd ed., ASM International, New York, 2008

    Google Scholar 

  34. G. Vander Voort, Metallography and Microstructures, in ASM Handbook (ASM International, 2004)

  35. W.S. Rasband, ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA. https://imagej.nih.gov/ij/, 1997–2018

  36. M.D. Abramoff, P.J. Magalhaes, and S.J. Ram, Image Processing with ImageJ, Biophoton. Int., 2004, 11(7), p 36–42

    Google Scholar 

  37. ASTM E112-13, Standard Test Methods for Determining Average Grain Size, ASTM International, West Conshohocken, PA, 2013, www.astm.org

  38. U.A. Siqueira, Solidification Thermal Parameters Affecting the Columnar- to-Equiaxed, Transition, 2002, 33, p 2107–2118. https://doi.org/10.1007/s11661-002-0042-4

    Article  Google Scholar 

  39. M.A. Martorano, C. Beckermann, and C. Gandin, A Solutal Interaction Mechanism for the Columnar-to-Equiaxed Transition in Alloy Solidification, Metall. Mater. Trans., 2003, https://doi.org/10.1007/s11661-003-0311-x

    Article  Google Scholar 

  40. H. Baker, Alloys Phase Diagrams vol. 3, in ASM Handbook (ASM International, 1998), pp. 279–336

  41. M. Prates de Campos Filho, G.J. Davies, Solidifiçao e Fundicao de Metais e Suas Ligas, 1978, pp. 10–90. (in Portuguese)

  42. W.R. Osório, C.M. Freire, and A. Garcia, The Fffect of the Dendritic Microstructure on the Corrosion Resistance of Zn-Al Alloys, J. Alloys Compd., 2005, 397, p 179–191. https://doi.org/10.1016/j.jallcom.2005.01.035

    Article  CAS  Google Scholar 

  43. A.E. Ares and L.M. Gassa, Corrosion Susceptibility of Zn-Al Alloys with Different Grains and Dendritic Microstructures in NaCl Solutions, Corros. Sci., 2012, 59, p 290–306. https://doi.org/10.1016/j.corsci.2012.03.015

    Article  CAS  Google Scholar 

  44. O.L. Rocha, C.A. Siqueira, and A. Garcia, Heat Flow Parameters Affecting Dendrite Spacings during Unsteady-State Solidification of Sn-Pb and Al-Cu Alloys, Metall. Mater. Trans. A., 2003, 34, p 995–1006. https://doi.org/10.1007/s11661-003-0229-3

    Article  Google Scholar 

  45. J.R. Scully, T.O. Knight, R.G. Buchheitt, and D.E. Peeblest, Electrochemical Characteristics of the Al2Cu, Al3Ta and Al3Zr Intermetallic Phases and Their Relevancy to the Localized Corrosion of Al Alloys, Corros. Alum. Alum. Alloy., 1993, 35, p 185–195. https://doi.org/10.1016/0010-938X(93)90148-A

    Article  CAS  Google Scholar 

  46. H.-H. Strehblow, P. Marcus, Mechanisms of Pitting Corrosion, in: P. Marcus (Ed.), Corrosion Mechanisms in Theory and Practice, 3rd edn. (CRE Press, Pennsylvania, 2012), p. 382. https://doi.org/10.1002/maco.200390104

  47. K.D. Ralston, N. Birbilis, and C.H.J. Davies, Revealing the Relationship Between Grain Size and Corrosion Rate of Metals, Scr. Mater., 2010, 63, p 1201–1204. https://doi.org/10.1016/j.scriptamat.2010.08.035

    Article  CAS  Google Scholar 

  48. F.J. Martin, G.T. Cheek, W.E. O’Grady, and P.M. Natishan, Impedance Studies of the Passive Film on Aluminium, Corros. Sci., 2005, 47, p 3187–3201. https://doi.org/10.1016/j.corsci.2005.05.058

    Article  CAS  Google Scholar 

  49. P.M. Natishan and W.E. O’Grady, Chloride Ion Interactions with Oxide-Covered Aluminum Leading to Pitting Corrosion: a Review, J. Electrochem. Soc., 2014, 161, p C421–C432. https://doi.org/10.1149/2.1011409jes

    Article  CAS  Google Scholar 

  50. A.S. Román, C.M. Méndez, and A.E. Ares, Corrosion Resistance of Al-Cu Alloys in Function of the Microstructure, Mater. Sci. Forum., 2014, https://doi.org/10.4028/www.scientific.net/MSF.783-786.100

    Article  Google Scholar 

  51. M. Büchler, T. Watari, and W.H. Smyrl, Investigation of the Initiation of Localized Corrosion on Aluminum Alloys by using Fluorescence Microscopy, Corros. Sci., 2000, 42, p 1661–1668. https://doi.org/10.1016/S0010-938X(00)00020-2

    Article  Google Scholar 

  52. G. Frankel, Electrochemical Techniques in Corrosion: status, Limitations, and Needs, J. ASTM Int., 2008, 5, p 1–27. https://doi.org/10.1520/JAI101241

    Article  Google Scholar 

  53. A.S. Roman, C.M. Méndez, C.E. Schvezov, A.E. Ares, Electrochemical properties OF Al-Cu alloys in NaCl solutions, in TMS Annual Meeting (2015). https://doi.org/10.1007/978-3-319-48191-3_92

  54. M. Orazem and B. Tribollet, Electrochemical Impedance Spectroscopy, Wiley, Hoboken, 2008, p 157–159

    Book  Google Scholar 

  55. W.R. Osório, E.S. Freitas, and A. Garcia, EIS and Potentiodynamic Polarization Studies on Immiscible Monotectic Al-In Alloys, Electrochim. Acta, 2013, 102, p 436–445. https://doi.org/10.1016/j.electacta.2013.04.047

    Article  CAS  Google Scholar 

  56. R. Orozco-Cruz, R. Galván-Martínez, E.A. Martínez, I. Fernández-Gómez, La técnica de Espectroscopia de Impedancia Electroquímica (EIS) aplicada al estudio de degradación de aleaciones de aluminio en solución salina, in XXV Congr. LA Soc. Mex. ELECTROQUÍMICA (2010), pp. 693–703

  57. R. Oltra and M. Keddam, Application of Impedance Technique to Localized Corrosion, Corros. Sci., 1988, 28, p 1–18. https://doi.org/10.1016/0010-938X(88)90002-9

    Article  CAS  Google Scholar 

  58. V.F. Lvovich, Impedance Spectroscopy Applications to Electrochemical and Dielectric Phenomena, Wiley, Hoboken, 2012

    Book  Google Scholar 

  59. J.C.S. Fernandes and M.G.S. Ferreira, Electrochemical Impedance Studies on Pure Aluminium in Carbonate Solution, J. Appl. Electrochem., 1990, 20, p 874–876. https://doi.org/10.1007/BF01094320

    Article  CAS  Google Scholar 

  60. L. Chen, N. Myung, P.T.A. Sumodjo, and K. Nobe, Comparative Electrodissolution and Localized Corrosion Study of 2024Al in Halide Media, Electrochim. Acta, 1999, 44, p 2751–2764. https://doi.org/10.1016/S0013-4686(98)00397-1

    Article  CAS  Google Scholar 

  61. P. Marcus, F. Mansfeld, Electrochemical Impedance Spectroscopy, in Analytical Methods in Corrosion Science and Engineering (Taylor/Fr, Boca Raton, 2005), pp 463–507. https://doi.org/10.1201/9781420028331

  62. G. Šekularac and I. Milošev, Corrosion of Aluminium Alloy AlSi7Mg0.3 in Artificial Sea Water with Added Sodium Sulphide, Corros. Sci., 2018, 144, p 54–73. https://doi.org/10.1016/j.corsci.2018.08.038

    Article  CAS  Google Scholar 

  63. A.S. Roman, C.M. Mendez, C.E. Schvezov, A.E. Ares, Electrochemical Behavior of Al-lwt.%Cu and Al-4.5wt.%Cu alloys, in TMS Annual Meeting (2014)

  64. J.R. Scully, D.E. Peebles, A.D. Romig, D.R. Frear, and C.R. Hills, Metallurgical Factors Influencing the Corrosion of Aluminum, AI-Cu, and AI-Si Alloy Thin Films in Dilute Hydrofluoric Solution, Metall. Trans. A., 1992, 23, p 2641–2655. https://doi.org/10.1007/BF02658068

    Article  Google Scholar 

  65. C.M. Rodriguez, A.E. Candia, C.E. Schvezov, M.R. Rosenberger, and A.E. Ares, Influencia de los parámetros térmicos sobre la microestructura de las aleaciones Al-Cu solidificadas direccionalmente, An. AFA., 2011, 23, p 42–50. https://doi.org/10.31527/analesafa.2013.23.2.42

    Article  Google Scholar 

Download references

Acknowledgments

Support by National Council for Scientific and Technical Research (CONICET) and National Agency of Scientific and Technological Promotion of Argentina (ANPCyT) under PICT-2017-0079 grant are duly acknowledged. A. S. Román thanks CONICET for the scholarship awarded to carry out this work. C.A. Gervasi duly acknowledges the Buenos Aires Commission for Scientific and Technical Research (CICBA) as a staff member of this Institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia E. Ares.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Román, A.S., Méndez, C.M., Gervasi, C.A. et al. Corrosion Resistance of Aluminum-Copper Alloys with Different Grain Structures. J. of Materi Eng and Perform 30, 131–144 (2021). https://doi.org/10.1007/s11665-020-05344-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05344-1

Keywords

Navigation