Skip to main content
Log in

A Tower-Shaped Three-Dimensional Piezoelectric Energy Harvester for Low-Level and Low-Frequency Vibration

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

The multiple forms of vibration exist in an ambient environment diffusely and already become a considerable object for energy harvesting. However, how to effectively extract low-level, low-frequency, and multi-directional vibration from the ambient environment is becoming a key issue in the field of energy harvesting. To solve this issue, a tower-shaped piezoelectric vibration energy harvester (TS-PVEH) is reported. Finite element simulation indicates that TS-PVEH works in two fundamental modes, i.e., its in-plane and out-of-plane vibration modes. Meanwhile, simulation results show that the natural frequency of TS-PVEH is 3.39 Hz, 3.40 Hz, and 11.50 Hz, respectively; and the experiments also verified that. By virtue of the tower structure of TS-PVEH, the device is pretty sensitive to three-dimensional vibration. At a low level of acceleration 1 m/s2, the maximum load power of TS-PVEH is 65.8 µW in out-of-plane mode and 17.2 µW in in-plane mode, respectively. Furthermore, the effects of the PVDF connection mode on the output performance of TS-PVEH were studied in detail, and comparative experimental results show that a reasonable connection of PVDF can improve energy harvesting efficiency. The proposed TS-PVEH is expected to be used to scavenge energy from multi-dimensional, low-level, and low-frequency vibrations that present in an ambient environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zou, H. X., Zhao, L. C., Gao, Q. H., Zuo, L., Liu, F. R., Tan, T., et al. (2019). Mechanical modulations for enhancing energy harvesting: Principles, methods and applications. Applied Energy. https://doi.org/10.1016/j.apenergy.2019.113871

    Article  Google Scholar 

  2. Dong, L., Closso, A. B., Jin, C., Tras, I., Chen, Z., & Zhang, J. X. (2019). Vibration-energy-harvesting system: transduction mechanisms, frequency tuning techniques, and biomechanical applications. Advanced Materials Technologies. https://doi.org/10.1002/admt.201900177

    Article  Google Scholar 

  3. Khalid, S., Raouf, I., Khan, A., Kim, N., & Kim, H. S. (2019). A review of human-powered energy harvesting for smart electronics: recent progress and challenges. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(4), 821–851. https://doi.org/10.1007/s40684-019-00144-y

    Article  Google Scholar 

  4. Oh, Y., Kwon, D.-S., Eun, Y., Kim, W., Kim, M.-O., Ko, H.-J., et al. (2019). Flexible energy harvester with piezoelectric and thermoelectric hybrid mechanisms for sustainable harvesting. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(4), 691–698. https://doi.org/10.1007/s40684-019-00132-2

    Article  Google Scholar 

  5. Hwang, W., Kim, K.-B., Cho, J. Y., Yang, C. H., Kim, J. H., Song, G. J., et al. (2019). Watts-level road-compatible piezoelectric energy harvester for a self-powered temperature monitoring system on an actual roadway. Applied Energy, 243, 313–320. https://doi.org/10.1016/j.apenergy.2019.03.122

    Article  Google Scholar 

  6. Nguyen, M. S., Yoon, Y.-J., & Kim, P. (2019). Enhanced broadband performance of magnetically coupled 2-DOF bistable energy harvester with secondary intrawell resonances. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(3), 521–530. https://doi.org/10.1007/s40684-019-00048-x

    Article  Google Scholar 

  7. Zhong, Y., Zhao, H., Guo, Y., Rui, P., Shi, S., Zhang, W., et al. (2019). An easily assembled electromagnetic-triboelectric hybrid nanogenerator driven by magnetic coupling for fluid energy harvesting and self-powered flow monitoring in a smart home/city. Advanced Materials Technologies. https://doi.org/10.1002/admt.201900741

    Article  Google Scholar 

  8. Wang, P. H., Liu, R. Y., Ding, W. B., Zhang, P., Pan, L., Dai, G. Z., et al. (2018). Complementary electromagnetic-triboelectric active sensor for detecting multiple mechanical triggering. Advanced Functional Materials. https://doi.org/10.1002/adfm.201705808

    Article  Google Scholar 

  9. Kim, J. E., Lee, S., & Kim, Y. Y. (2019). Mathematical model development, experimental validation and design parameter study of a folded two-degree-of-freedom piezoelectric vibration energy harvester. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(5), 893–906. https://doi.org/10.1007/s40684-019-00149-7

    Article  MathSciNet  Google Scholar 

  10. Wang, P. H., Du, H. J., Shen, S. N., Zhang, M. S., & Liu, B. (2012). Preparation and characterization of ZnO microcantilever for nanoactuation. Nanoscale Research Letters, 7, 1–5. https://doi.org/10.1186/1556-276x-7-176

    Article  Google Scholar 

  11. Zhao, L. C., Zou, H. X., Yan, G., Liu, F. R., Tan, T., Wei, K. X., et al. (2019). Magnetic coupling and flextensional amplification mechanisms for high-robustness ambient wind energy harvesting. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2019.112166

    Article  Google Scholar 

  12. Yang, Z. B., & Zu, J. (2016). Toward harvesting vibration energy from multiple directions by a nonlinear compressive-mode piezoelectric transducer. IEEE/ASME Transactions on Mechatronics, 21(3), 1787–1791. https://doi.org/10.1109/tmech.2015.2459014

    Article  Google Scholar 

  13. Zhao, H. B., Wei, X. X., Zhong, Y. M., & Wang, P. H. (2019). A direction self-tuning two-dimensional piezoelectric vibration energy harvester. Sensors. https://doi.org/10.3390/s20010077

    Article  Google Scholar 

  14. Liu, H., Hou, C., Lin, J., Li, Y., Shi, Q., Chen, T., et al. (2018). A non-resonant rotational electromagnetic energy harvester for low-frequency and irregular human motion. Applied Physics Letters. https://doi.org/10.1063/1.5053945

    Article  Google Scholar 

  15. Fan, K. Q., Cai, M. L., Liu, H. Y., & Zhang, Y. W. (2019). Capturing energy from ultra-low frequency vibrations and human motion through a monostable electromagnetic energy harvester. Energy, 169, 356–368. https://doi.org/10.1016/j.energy.2018.12.053

    Article  Google Scholar 

  16. Wang, P. H., Tanaka, K., Sugiyama, S., Dai, X. H., Zhao, X. L., & Liu, J. Q. (2009). A micro electromagnetic low level vibration energy harvester based on MEMS technology. Microsystem Technologies, 15(6), 941–951. https://doi.org/10.1007/s00542-009-0827-0

    Article  Google Scholar 

  17. Chen, J., & Wang, Y. (2019). A dual electromagnetic array with intrinsic frequency up-conversion for broadband vibrational energy harvesting. Applied Physics Letters. https://doi.org/10.1063/1.5083910

    Article  Google Scholar 

  18. Tao, K., Lye, S. W., Miao, J., Tang, L., & Hu, X. (2015). Out-of-plane electret-based MEMS energy harvester with the combined nonlinear effect from electrostatic force and a mechanical elastic stopper. Journal of Micromechanics and Microengineering. https://doi.org/10.1088/0960-1317/25/10/104014

    Article  Google Scholar 

  19. Gao, C., Gao, S., Liu, H., Jin, L., Lu, J., & Li, P. (2017). Optimization for output power and band width in out-of-plane vibration energy harvesters employing electrets theoretically, numerically and experimentally. Microsystem Technologies, 23(12), 5759–5769. https://doi.org/10.1007/s00542-017-3408-7

    Article  Google Scholar 

  20. Xu, M., Zhao, T., Wang, C., Zhang, S. L., Li, Z., Pan, X., et al. (2019). High power density tower-like triboelectric nanogenerator for harvesting arbitrary directional water wave energy. ACS Nano, 13(2), 1932–1939. https://doi.org/10.1021/acsnano.8b08274

    Article  Google Scholar 

  21. Wang, P. H., Pan, L., Wang, J. Y., Xu, M. Y., Dai, G. Z., Zou, H. Y., et al. (2018). An ultra-low-friction triboelectric-electromagnetic hybrid nanogenerator for rotation energy harvesting and self-powered wind speed sensor. ACS Nano, 12(9), 9433–9440. https://doi.org/10.1021/acsnano.8b04654

    Article  Google Scholar 

  22. Xu, M. Y., Wang, P. H., Wang, Y. C., Zhang, S. L., Wang, A. C., Zhang, C. L., et al. (2018). A soft and robust spring based triboelectric nanogenerator for harvesting arbitrary directional vibration energy and self-powered vibration sensing. Advanced Energy Materials. https://doi.org/10.1002/aenm.201702432

    Article  Google Scholar 

  23. Zou, H. Y., Zhang, Y., Guo, L. T., Wang, P. H., He, X., Dai, G. Z., et al. (2019). Quantifying the triboelectric series. Nature Communications. https://doi.org/10.1038/s41467-019-09461-x

    Article  Google Scholar 

  24. Fan, F. R., Tian, Z. Q., & Wang, Z. L. (2012). Flexible triboelectric generator! Nano Energy, 1(2), 328–334. https://doi.org/10.1016/j.nanoen.2012.01.004

    Article  Google Scholar 

  25. Wang, Z. L., & Wang, A. C. (2019). On the origin of contact-electrification. Materials Today, 30, 34–51. https://doi.org/10.1016/j.mattod.2019.05.016

    Article  Google Scholar 

  26. Chen, R., Ren, L., Xia, H., Yuan, X., & Liu, X. (2015). Energy harvesting performance of a dandelion-like multi-directional piezoelectric vibration energy harvester. Sensors and Actuators A: Physical, 230, 1–8. https://doi.org/10.1016/j.sna.2015.03.038

    Article  Google Scholar 

  27. Fan, K., Chang, J., Pedrycz, W., Liu, Z., & Zhu, Y. (2015). A nonlinear piezoelectric energy harvester for various mechanical motions. Applied Physics Letters. https://doi.org/10.1063/1.4922212

    Article  Google Scholar 

  28. Deng, H., Du, Y., Wang, Z., Zhang, J., Ma, M., & Zhong, X. (2018). A multimodal and multidirectional vibrational energy harvester using a double-branched beam. Applied Physics Letters. https://doi.org/10.1063/1.5024567

    Article  Google Scholar 

  29. Wang, D., Lu, H., Deng, L., & Zhang, D. (2019). An H-shaped two-dimensional piezoelectric vibration energy harvester. Japanese Journal of Applied Physics. https://doi.org/10.7567/1347-4065/ab4074

    Article  Google Scholar 

  30. Yang, Y. W., Wu, H., & Soh, C. K. (2015). Experiment and modeling of a two-dimensional piezoelectric energy harvester. Smart Materials and Structures. https://doi.org/10.1088/0964-1726/24/12/125011

    Article  Google Scholar 

  31. Zhao, N., Yang, J., Yu, Q., Zhao, J., Liu, J., Wen, Y., et al. (2016). Three-dimensional piezoelectric vibration energy harvester using spiral-shaped beam with triple operating frequencies. Review of Scientific Instruments, 87(1), 015003. https://doi.org/10.1063/1.4940417

    Article  Google Scholar 

  32. Zhang, H., Jiang, S., & He, X. (2017). Impact-based piezoelectric energy harvester for multidimensional, low-level, broadband, and low-frequency vibrations. Applied Physics Letters. https://doi.org/10.1063/1.4984895

    Article  Google Scholar 

  33. Wang, P., Liu, X., Zhao, H., Zhang, W., Zhang, X., Zhong, Y., et al. (2019). A two-dimensional energy harvester with radially distributed piezoelectric array for vibration with arbitrary in-plane directions. Journal of Intelligent Material Systems and Structures, 30(7), 1094–1104. https://doi.org/10.1177/1045389x19828820

    Article  Google Scholar 

  34. Mei, J., & Li, L. (2015). Double-wall piezoelectric cylindrical energy harvester. Sensors and Actuators A: Physical, 233, 405–413. https://doi.org/10.1016/j.sna.2015.07.022

    Article  Google Scholar 

  35. Gratuze, M., Alameh, A. H., & Nabki, F. (2019). Design of the squared daisy: a multi-mode energy harvester, with reduced variability and a non-linear frequency response. Sensors (Basel). https://doi.org/10.3390/s19153247

    Article  Google Scholar 

  36. Zhu, Y., Zu, J., & Su, W. (2013). Broadband energy harvesting through a piezoelectric beam subjected to dynamic compressive loading. Smart Materials and Structures. https://doi.org/10.1088/0964-1726/22/4/045007

    Article  Google Scholar 

  37. Wang, P., & Du, H. (2015). ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance. Review of Scientific Instruments, 86(7), 075002. https://doi.org/10.1063/1.4923456

    Article  Google Scholar 

  38. Liu, H., Tay, C. J., Quan, C., Kobayashi, T., & Lee, C. (2011). Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power. Journal of Microelectromechanical Systems, 20(5), 1131–1142. https://doi.org/10.1109/jmems.2011.2162488

    Article  Google Scholar 

  39. Chen, Y., & Yan, Z. (2020). Nonlinear analysis of axially loaded piezoelectric energy harvesters with flexoelectricity. International Journal of Mechanical Sciences. https://doi.org/10.1016/j.ijmecsci.2020.105473

    Article  Google Scholar 

  40. Lin, Z. M., Chen, J., Li, X. S., Li, J., Liu, J., Awais, Q., et al. (2016). Broadband and three-dimensional vibration energy harvesting by a non-linear magnetoelectric generator. Applied Physics Letters. https://doi.org/10.1063/1.4972188

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61671017), Excellent Youth Talent Support Program in Colleges and Universities of Anhui Province in China (gxyqZD2018004), Provincial Natural Science Foundation of Anhui Higher Education Institution of China (KJ2019A0016, KJ2016A787), Anhui Provincial Natural Science Foundation of China (1908085MF198, 1508085ME72), Open Research Fund of State Key Laboratory of Pulsed Power Laser Technology (No. SKL2018KF04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peihong Wang.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Zhao, H., Yu, J. et al. A Tower-Shaped Three-Dimensional Piezoelectric Energy Harvester for Low-Level and Low-Frequency Vibration. Int. J. of Precis. Eng. and Manuf.-Green Tech. 8, 1537–1550 (2021). https://doi.org/10.1007/s40684-020-00281-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-020-00281-9

Keywords

Navigation