Skip to main content
Log in

Ariel – a window to the origin of life on early earth?

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

Is there life beyond Earth? An ideal research program would first ascertain how life on Earth began and then use this as a blueprint for its existence elsewhere. But the origin of life on Earth is still not understood, what then could be the way forward? Upcoming observations of terrestrial exoplanets provide a unique opportunity for answering this fundamental question through the study of other planetary systems. If we are able to see how physical and chemical environments similar to the early Earth evolve we open a window into our own Hadean eon, despite all information from this time being long lost from our planet’s geological record. A careful investigation of the chemistry expected on young exoplanets is therefore necessary, and the preparation of reference materials for spectroscopic observations is of paramount importance. In particular, the deduction of chemical markers identifying specific processes and features in exoplanetary environments, ideally “uniquely”. For instance, prebiotic feedstock molecules, in the form of aerosols and vapours, could be observed in transmission spectra in the near future whilst their surface deposits could be observed from reflectance spectra. The same detection methods also promise to identify particular intermediates of chemical and physical processes known to be prebiotically plausible. Is Ariel truly able to open a window to the past and answer questions concerning the origin of life on our planet and the universe? In this paper, we discuss aspects of prebiotic chemistry that will help in formulating future observational and data interpretation strategies for the Ariel mission. This paper is intended to open a discussion and motivate future detailed laboratory studies of prebiotic processes on young exoplanets and their chemical signatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Translated by D.P. Stern

  2. Noted by Günther Hasinger during Ariel Science, Mission & Community 2020 Conference.

References

  1. Bless, R.C.: Discovering the Cosmos. University Science Books, U.S. (2013)

    Google Scholar 

  2. Sedley, D.: Lucretius. In: Zalta, E.N. (ed.) Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Center for the Study of Language and Information, p. 94035. Stanford University, Stanford (2018)

    Google Scholar 

  3. Mayor, M., Queloz, D.: A Jupiter-mass companion to a solar-type star. Nature. 378, 355–359 (1995). https://doi.org/10.1038/378355a0

    Article  ADS  Google Scholar 

  4. Charbonneau, D., Brown, T.M., Noyes, R.W., Gilliland, R.L.: Detection of an extrasolar planet atmosphere. Astrophys. J. 568, 377–384 (2002). https://doi.org/10.1086/338770

    Article  ADS  Google Scholar 

  5. Deming, L.D., Seager, S.: Illusion and reality in the atmospheres of exoplanets. J. Geophys. Res. 122, 53–75 (2017). https://doi.org/10.1002/2016JE005155

    Article  Google Scholar 

  6. Mandel, K., Agol, E.: Analytic light curves for planetary transit searches. Astrophys. J. 580, L171–L175 (2002). https://doi.org/10.1086/345520

    Article  ADS  Google Scholar 

  7. Udry, S., Fischer, D., Queloz, D.: A decade of radial-velocity discoveries in the exoplanet domain. Protostars Planets V. 951, 685–699 (2007)

    ADS  Google Scholar 

  8. Seager, S., Kuchner, M., Hier-Majumder, C.A., Militzer, B.: Mass-radius relationships for solid exoplanets. Astrophys. J. 669, 1279–1297 (2007). https://doi.org/10.1086/521346

    Article  ADS  Google Scholar 

  9. Dressing, C.D., Charbonneau, D., Dumusque, X., Gettel, S., Pepe, F., Cameron, A.C., Latham, D.W., Molinari, E., Udry, S., Affer, L., Bonomo, A.S., Buchhave, L.A., Cosentino, R., Figueira, P., Fiorenzano, A.F.M., Harutyunyan, A., Haywood, R.D., Johnson, J.A., Lopez-Morales, M., Lovis, C., Malavolta, L., Mayor, M., Micela, G., Motalebi, F., Nascimbeni, V., Phillips, D.F., Piotto, G., Pollacco, D., Queloz, D., Rice, K., Sasselov, D., Segransan, D., Sozzetti, A., Szentgyorgyi, A., Watson, C.: The mass of Kepler-93b and the composition of terrestrial planets. Astrophys. J. 800, (2015). https://doi.org/10.1088/0004-637X/800/2/135

  10. Zeng, L., Sasselov, D.: A detailed model grid for solid planets from 0.1 through 100 earth masses. Publ. Astron. Soc. PACIFIC. 125, 227–239 (2013). https://doi.org/10.1086/669163

    Article  ADS  Google Scholar 

  11. Fortney, J.J., Shabram, M., Showman, A.P., Lian, Y., Freedman, R.S., Marley, M.S., Lewis, N.K.: Transmission spectra of three-dimensional hot Jupiter model atmospheres. Astrophys. J. 709, 1396–1406 (2010). https://doi.org/10.1088/0004-637X/709/2/1396

    Article  ADS  Google Scholar 

  12. Swain, M.R., Tinetti, G., Vasisht, G., Deroo, P., Griffith, C., Bouwman, J., Chen, P., Yung, Y., Burrows, A., Brown, L.R., Matthews, J., Rowe, J.F., Kuschnig, R., Angerhausen, D.: Water, methane and carbon dioxide present in the dayside spectrum of the exoplanet HD 209458b. Astrophys. J. 704, 1616–1621 (2009). https://doi.org/10.1088/0004-637X/704/2/1616

    Article  ADS  Google Scholar 

  13. Brogi, M., Snellen, I.A.G., de Kok, R.J., Albrecht, S., Birkby, J.L., de Mooij, E.J.W.: Detection of molecular absorption in the dayside of exoplanet 51 Pegasi b? Astrophys. J. 767, (2013). https://doi.org/10.1088/0004-637X/767/1/27

  14. Greene, T.P., Line, M.R., Montero, C., Fortney, J.J., Lustig-Yaeger, J., Luther, K.: Characterizing transiting exoplanet atmospheres with JWST. Astrophys. J. 817, (2016). https://doi.org/10.3847/0004-637X/817/1/17

  15. Charbonneau, D., Allen, L.E., Megeath, S.T., Torres, G., Alonso, R., Brown, T.M., Gilliland, R.L., Latham, D.W., Mandushev, G., O’Donovan, F.T., Sozzetti, A.: Detection of thermal emission from an extrasolar planet. Astrophys. J. 626, 523–529 (2005). https://doi.org/10.1086/429991

    Article  ADS  Google Scholar 

  16. Demory, B.O., et al.: A map of the large day–night temperature gradient of a super-earth exoplanet. Nature. 7141, 207–209 (2016)

    Article  ADS  Google Scholar 

  17. Knutson, H.A., Charbonneau, D., Allen, L.E., Fortney, J.J., Agol, E., Cowan, N.B., Showman, A.P., Cooper, C.S., Megeath, S.T.: A map of the day-night contrast of the extrasolar planet HD 189733b. Nature. 447, 183–186 (2007). https://doi.org/10.1038/nature05782

    Article  ADS  Google Scholar 

  18. Sing, D.K., Wakeford, H.R., Showman, A.P., Nikolov, N., Fortney, J.J., Burrows, A.S., Ballester, G.E., Deming, D., Aigrain, S., Desert, J.-M., Gibson, N.P., Henry, G.W., Knutson, H., des Etangs, A.L., Pont, F., Vidal-Madjar, A., Williamson, M.W., Wilson, P.A.: HST hot-Jupiter transmission spectral survey: detection of potassium in WASP-31b along with a cloud deck and Rayleigh scattering. Mon. Not. R. Astron. Soc. 446, 2428–2443 (2015). https://doi.org/10.1093/mnras/stu2279

    Article  ADS  Google Scholar 

  19. Lacour, S., Nowak, M., Wang, J., Pfuhl, O., Eisenhauer, F., Abuter, R., Amorim, A., Anugu, N., Benisty, M., Berger, J.P., Beust, H., Blind, N., Bonnefoy, M., Bonnet, H., Bourget, P., Brandner, W., Buron, A., Collin, C., Charnay, B., Chapron, F., Clénet, Y., Coudé du Foresto, V., de Zeeuw, P.T., Deen, C., Dembet, R., Dexter, J., Duvert, G., Eckart, A., Förster Schreiber, N.M., Fédou, P., Garcia, P., Garcia Lopez, R., Gao, F., Gendron, E., Genzel, R., Gillessen, S., Gordo, P., Greenbaum, A., Habibi, M., Haubois, X., Haußmann, F., Henning, T., Hippler, S., Horrobin, M., Hubert, Z., Jimenez Rosales, A., Jocou, L., Kendrew, S., Kervella, P., Kolb, J., Lagrange, A.-M., Lapeyrère, V., Le Bouquin, J.-B., Léna, P., Lippa, M., Lenzen, R., Maire, A.-L., Mollière, P., Ott, T., Paumard, T., Perraut, K., Perrin, G., Pueyo, L., Rabien, S., Ramirez, A., Rau, C., Rodriguez-Coira, G., Rousset, G., Sanchez-Bermudez, J., Scheithauer, S., Schuhler, N., Straub, O., Straubmeier, C., Sturm, E., Tacconi, L.J., Vincent, F., van Dishoeck, E.F., von Fellenberg, S., Wank, I., Waisberg, I., Widmann, F., Wieprecht, E., Wiest, M., Wiezorrek, E., Woillez, J., Yazici, S., Ziegler, D., Zins, G.: First direct detection of an exoplanet by optical interferometry - Astrometry and K-band spectroscopy of HR 8799 e. A&A. 623, L11 (2019). https://doi.org/10.1051/0004-6361/201935253

  20. Schwieterman, E., Reinhard, C., Olson, S., Lyons, T.: The Importance of UV Capabilities for Identifying Inhabited Exoplanets with Next Generation Space Telescopes. (2018)

  21. Powner, M.W., Sutherland, J.D.: Prebiotic chemistry: a new modus operandi. Philos. Trans. R. Soc. B-Biol. Sci. 366, 2870–2877 (2011). https://doi.org/10.1098/rstb.2011.0134

    Article  Google Scholar 

  22. Oparin, A.I.: The origin of life. Macmillan Company. viii p 2, New York (1938)

    Google Scholar 

  23. Miller, S.L.: A production of amino acids under possible primitive earth conditions. Science. 117(80), 528 LP–528529 (1953)

    Article  ADS  Google Scholar 

  24. Brogan, C.L., Pérez, L.M., Hunter, T.R., Dent, W.R.F., Hales, A.S., Hills, R.E., Corder, S., Fomalont, E.B., Vlahakis, C., Asaki, Y., Barkats, D., Hirota, A., Hodge, J.A., Impellizzeri, C.M.V., Kneissl, R., Liuzzo, E., Lucas, R., Marcelino, N., Matsushita, S., Nakanishi, K., Phillips, N., Richards, A.M.S., Toledo, I., Aladro, R., Broguiere, D., Cortes, J.R., Cortes, P.C., Espada, D., Galarza, F., Appadoo, D.G., Ramirez, L.G., Humphreys, E.M., Jung, T., Kameno, S., Laing, R.A., Leon, S., Marconi, G., Mignano, A., Nikolic, B., Nyman, L.-A., Radiszcz, M., Remijan, A., Rodón, J.A., Sawada, T., Takahashi, S., Tilanus, R.P.J., Vilaro, B.V., Watson, L.C., Wiklind, T., Akiyama, E., Chapillon, E., Monsalvo, I.d.G., Di Francesco, J., Gueth, F., Kawamura, A., Lee, C.-F., Luong, Q.N., Mangum, J., Pietu, V., Sanhueza, P., Saigo, K., Takakuwa, S., Ubach, C., van Kempen, T., Wootten, A., Carrizo, A.C., Francke, H., Gallardo, J., Garcia, J., Gonzalez, S., Hill, T., Kaminski, T., Kurono, Y., Liu, H.-Y., Lopez, C., Morales, F., Plarre, K., Schieven, G., Testi, L., Videla, L., Villard, E., Andreani, P., Hibbard, J.E., Tatematsu, K.: The 2014 ALMA long baseline campaign: first results from high angular resolution observations toward the HL Tau region. Astrophys. J. 808, L3 (2015). https://doi.org/10.1088/2041-8205/808/1/L3

    Article  ADS  Google Scholar 

  25. Canup, R.M., Asphaug, E.: Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature. 412, 708–712 (2001). https://doi.org/10.1038/35089010

    Article  ADS  Google Scholar 

  26. Genda, H., Brasser, R., Mojzsis, S.J.: The terrestrial late veneer from core disruption of a lunar-sized impactor. Earth Planet. Sci. Lett. 480, 25–32 (2017). https://doi.org/10.1016/j.epsl.2017.09.041

    Article  ADS  Google Scholar 

  27. Koeberl, C., Reimold, W.U., McDonald, I., Rosing, M.: Search for petrographic and geochemical evidence for the late heavy bombardment on Earth in early Archean rocks from Isua, Greenland. In: Gilmour, I., Koeberl, C. (eds.) Impacts and the Early Earth, pp. 73–97. Springer-Verlag Berlin (2000). isbn:Heidelberger platz 3, D-14197 Berlin, Germany

  28. Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F.: Origin of the orbital architecture of the giant planets of the solar system. Nature. 435, 459–461 (2005). https://doi.org/10.1038/nature03539

    Article  ADS  Google Scholar 

  29. Nesvorny, D., Morbidelli, A.: Statistical study of the early solar System’s instability with four, five, and six Giant planets. Astron. J. 144, (2012). https://doi.org/10.1088/0004-6256/144/4/117

  30. Gomes, R., Levison, H.F., Tsiganis, K., Morbidelli, A.: Origin of the cataclysmic late heavy bombardment period of the terrestrial planets. Nature. 435, 466–469 (2005). https://doi.org/10.1038/nature03676

    Article  ADS  Google Scholar 

  31. Turner, G., Cadogan, P.H., Yonge, C.J.: Argon selenochronology. Proc. Lunar. Sci. Conf. 4, 1889–1914 (1973)

    ADS  Google Scholar 

  32. Tera, F., Papanastassiou, D.A., Wasserburg, G.J.: A lunar cataclysm at 3.95 AE and the systematics of the lunar crust. Lunar Sci. IV., Abstr. Houst. 723–725 (1973)

  33. Chyba, C., Sagan, C.: Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules - an inventory for the origin of life. Nature. 355, 125–132 (1992). https://doi.org/10.1038/355125a0

    Article  ADS  Google Scholar 

  34. Morbidelli, A., Marchi, S., Bottke, W.F., Kring, D.A.: A sawtooth-like timeline for the first billion years of lunar bombardment. Earth Planet. Sci. Lett. 355, 144–151 (2012). https://doi.org/10.1016/j.epsl.2012.07.037

    Article  ADS  Google Scholar 

  35. Geiss, J., Rossi, A.P.: On the chronology of lunar origin and evolution implications for earth, Mars and the Solar System as a whole. Astron. Astrophys. Rev. 21, 1–54 (2013). https://doi.org/10.1007/s00159-013-0068-1

    Article  Google Scholar 

  36. Holzheid, A., Sylvester, P., O’Neill, H.S.C., Rubie, D.C., Palme, H.: Evidence for a late chondritic veneer in the Earth’s mantle from high-pressure partitioning of palladium and platinum. Nature. 406, 396–399 (2000). https://doi.org/10.1038/35019050

    Article  ADS  Google Scholar 

  37. Koeberl, C.: Impact processes on the early earth. Elements. 2, 211–216 (2006). https://doi.org/10.2113/gselements.2.4.211

    Article  Google Scholar 

  38. Bottke, W.F., Vokrouhlicky, D., Minton, D., Nesvorny, D., Morbidelli, A., Brasser, R., Simonson, B., Levison, H.F.: An Archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature. 485, 78–81 (2012). https://doi.org/10.1038/nature10967

    Article  ADS  Google Scholar 

  39. Norman, M.D., Duncan, R.A., Huard, J.J.: Imbrium provenance for the Apollo 16 Descartes terrain: argon ages and geochemistry of lunar breccias 67016 and 67455. Geochim. Cosmochim. Acta. 74, 763–783 (2010). https://doi.org/10.1016/j.gca.2009.10.024

    Article  ADS  Google Scholar 

  40. Mann, A.: Bashing holes in the tale of Earth’s troubled youth. Nature. 553, 393–395 (2018). https://doi.org/10.1038/d41586-018-01074-6

    Article  ADS  Google Scholar 

  41. Watson, E.B., Harrison, T.M.: Zircon thermometer reveals minimum melting conditions on earliest earth. Science. 308(80), 841–844 (2005). https://doi.org/10.1126/science.1110873

    Article  ADS  Google Scholar 

  42. Ryder, G.: Mass flux in the ancient earth-moon system and benign implications for the origin of life on earth. J. Geophys. Res. Planets. 107, (2002). https://doi.org/10.1029/2001JE001583

  43. Koeberl, C.: The record of impact processes on the early Earth: A review of the first 2.5 billion years. In: Reimold, WU and Gibson, R. (ed.) Processes on the Early Earth. pp. 1–22. Geological Sec Amer Inc., 3300 Penrose PL, PO BOX 9140, Boulder, CO 80301 USA (2006)

  44. Kuwahara, H., Sugita, S.: The molecular composition of impact-generated atmospheres on terrestrial planets during the post-accretion stage. Icarus. 257, 290–301 (2015). https://doi.org/10.1016/j.icarus.2015.05.007

    Article  ADS  Google Scholar 

  45. Lunine, J.I.: Physical conditions on the early earth. Philos. Trans. R. Soc. B Biol. Sci. 361, 1721–1731 (2006). https://doi.org/10.1098/rstb.2006.1900

    Article  Google Scholar 

  46. Chyba, C.F., Thomas, P.J., Brookshaw, L., Sagan, C.: Cometary delivery of organic molecules to the early earth. Science. 249(80), 366–373 (1990). https://doi.org/10.1126/science.11538074

    Article  ADS  Google Scholar 

  47. Martins, Z.: Organic chemistry of carbonaceous meteorites. Elements. 7, 35–40 (2011). https://doi.org/10.2113/gselements.7.1.35

    Article  Google Scholar 

  48. Martins, Z., Modica, P., Zanda, B., D’Hendecourt, L.L.S.: The amino acid and hydrocarbon contents of the Paris meteorite: insights into the most primitive CM chondrite. Meteorit. Planet. Sci. 50, 926–943 (2015). https://doi.org/10.1111/maps.12442

    Article  ADS  Google Scholar 

  49. Martins, Z., Botta, O., Fogel, M.L., Sephton, M.A., Glavin, D.P., Watson, J.S., Dworkin, J.P., Schwartz, A.W., Ehrenfreund, P.: Extraterrestrial nucleobases in the Murchison meteorite. Earth Planet. Sci. Lett. 270, 130–136 (2008). https://doi.org/10.1016/j.epsl.2008.03.026

    Article  ADS  Google Scholar 

  50. Sutherland, J.D.: The origin of life-out of the blue. Angew. Chem. Int. Ed. 55, 104–121 (2016)

    Article  Google Scholar 

  51. Rios, A.C.: Impact synthesis of the RNA bases. Proc. Natl. Acad. Sci. 112, 643–644 (2015)

    Article  ADS  Google Scholar 

  52. Ferus, M., Nesvorný, D., Šponer, J., Kubelík, P., Michalčíková, R., Shestivská, V., Šponer, J.E., Civiš, S.: High-energy chemistry of formamide: a unified mechanism of nucleobase formation. Proc. Natl. Acad. Sci. U. S. A. 112, 657–662 (2015). https://doi.org/10.1073/pnas.1412072111

    Article  ADS  Google Scholar 

  53. Morbidelli, A., Chambers, J., Lunine, J.I., Petit, J.M., Robert, F., Valsecchi, G.B., Cyr, K.E.: Source regions and timescales for the delivery of water to the earth. Meteorit. Planet. Sci. 35, 1309–1320 (2000)

    Article  ADS  Google Scholar 

  54. de Niem, D., Kuehrt, E., Morbidelli, A., Motschmann, U.: Atmospheric erosion and replenishment induced by impacts upon the Earth and Mars during a heavy bombardment. Icarus. 221, 495–507 (2012). https://doi.org/10.1016/j.icarus.2012.07.032

    Article  ADS  Google Scholar 

  55. Hashimoto, G.L., Abe, Y., Sugita, S.: The chemical composition of the early terrestrial atmosphere: formation of a reducing atmosphere from CI-like material. J. Geophys. Res. 112, E05010 (2007). https://doi.org/10.1029/2006JE002844

    Article  ADS  Google Scholar 

  56. Yang, X., Gaillard, F., Scaillet, B.: A relatively reduced hadean continental crust and implications for the early atmosphere and crustal rheology. Earth Planet. Sci. Lett. 393, (2014). https://doi.org/10.1016/j.epsl.2014.02.056

  57. Zahnle, K., Lupu, R., Catling, D.: Creation and Evolution of Impact-Generated Reduced Atmospheres of Early Earth. (2019)

  58. Šponer, J.E., Szabla, R., Gora, R.W., Saitta, A.M., Pietrucci, F., Saija, F., Di Mauro, E., Saladino, R., Ferus, M., Civiš, S., Šponer, J.: Prebiotic synthesis of nucleic acids and their building blocks at the atomic level - merging models and mechanisms from advanced computations and experiments. Phys. Chem. Chem. Phys. 18, 20047–20066 (2016). https://doi.org/10.1039/c6cp00670a

    Article  Google Scholar 

  59. Babankova, D., Civis, S., Juha, L., Bittner, M., Cihelka, J., Pfeifer, M., Skala, J., Bartnik, A., Fiedorowicz, H., Mikolajczyk, J., Ryc, L., Sedivcova, T.: Optical and X-ray emission spectroscopy of high-power laser-induced dielectric breakdown in molecular gases and their mixtures. J. Phys. Chem. A. 110, 12113–12120 (2006). https://doi.org/10.1021/jp063689o

    Article  Google Scholar 

  60. Ferus, M., Pietrucci, F., Saitta, A.M., Knížek, A., Kubelík, P., Ivanek, O., Shestivská, V., Civiš, S.: Formation of nucleobases in a Miller–Urey reducing atmosphere. Proc. Natl. Acad. Sci. 114, 4306–4311 (2017). https://doi.org/10.1073/pnas.1700010114

  61. Ferus, M., Michalčíková, R., Shestivská, V., Šponer, J., Šponer, J.E., Civiš, S.: High-energy chemistry of Formamide: a simpler way for nucleobase formation. J. Phys. Chem. A. 118, 719–736 (2014)

    Article  Google Scholar 

  62. Ferus, M., Civis, S., Mladek, A., Sponer, J., Juha, L., Sponer, J.E.J.: On the road from Formamide ices to nucleobases: IR-spectroscopic observation of a direct reaction between Cyano radicals and Formamide in a high-energy impact event. J. Am. Chem. Soc. 134, 20788–20796 (2012). https://doi.org/10.1021/ja310421z

    Article  Google Scholar 

  63. Civis, S., Szabla, R., Szyja, B.M., Smykowski, D., Ivanek, O., Knizek, A., Kubelik, P., Sponer, J., Ferus, M., Sponer, J.E.: TiO2-catalyzed synthesis of sugars from formaldehyde in extraterrestrial impacts on the early earth. Sci. Rep. 6, 23199 (2016). https://doi.org/10.1038/srep27962

    Article  ADS  Google Scholar 

  64. Civis, S., Juha, L., Babankova, D., Cvacka, J., Frank, O., Jehlicka, J., Kralikova, B., Krasa, J., Kubat, P., Muck, A., Pfeifer, M., Skala, J., Ullschmied, J.: Amino acid formation induced by high-power laser in CO2/CO-N-2-H2O gas mixtures. Chem. Phys. Lett. 386, 169–173 (2004). https://doi.org/10.1016/j.cplett.2004.01.034

    Article  ADS  Google Scholar 

  65. Ferus, M., Kubelík, P., Knížek, A., Pastorek, A., Sutherland, J., Civiš, S.: High energy radical chemistry formation of HCN-rich atmospheres on early earth. Sci. Rep. 7, (2017). https://doi.org/10.1038/s41598-017-06489-1

  66. Civiš, M., Ferus, M., Knížek, A., Kubelík, P., Kamas, M., Španěl, P., Dryahina, K., Shestivska, V., Juha, L., Skřehot, P., Laitl, V., Civiš, S.: Spectroscopic investigations of high-energy-density plasma transformations in a simulated early reducing atmosphere containing methane, nitrogen and water. Phys. Chem. Chem. Phys. 18, 27317–27325 (2016). https://doi.org/10.1039/c6cp05025e

    Article  Google Scholar 

  67. Civiš, S., Knížek, A., Ivanek, O., Kubelík, P., Zukalová, M., Kavan, L., Ferus, M.: Origin of methane and biomolecules from a CO2 cycle on terrestrial planets. Nat. Astron. 1, 721–726 (2017). https://doi.org/10.1038/s41550-017-0260-8

    Article  ADS  Google Scholar 

  68. Ferus, M., Matulkova, I., Juha, L., Civis, S.: Investigation of laser-plasma chemistry in CO-N-2-H2O mixtures using O-18 labeled water. Chem. Phys. Lett. 472, 14–18 (2009). https://doi.org/10.1016/j.cplett.2009.02.056

    Article  ADS  Google Scholar 

  69. Civis, S., Babankova, D., Cihelkat, J., Sazama, P., Juha, L.: Spectroscopic investigations of high-power laser-induced dielectric breakdown in gas mixtures containing carbon monoxide. J. Phys. Chem. A. 112, 7162–7169 (2008). https://doi.org/10.1021/jp712011It

    Article  Google Scholar 

  70. Airapetian, V.S., Glocer, A., Gronoff, G., Hebrard, E., Danchi, W.: Prebiotic chemistry and atmospheric warming of early Earth by an active young Sun. Nat. Geosci. 9, 452 (2016). https://doi.org/10.1038/NGEO2719

    Article  ADS  Google Scholar 

  71. Lammer, H., Sproß, L., Grenfell, J.L., Scherf, M., Fossati, L., Lendl, M., Cubillos, P.E.: The role of N 2 as a geo-biosignature for the detection and characterization of earth-like habitats. Astrobiology. 19, 927–950 (2019). https://doi.org/10.1089/ast.2018.1914

    Article  ADS  Google Scholar 

  72. Lammer, H., Sproß, L., Grenfell, J.L., Scherf, M., Fossati, L., Lendl, M., Cubillos, P.E.: The role of N2 as a geo-biosignature for the detection and characterization of earth-like habitats. Astrobiology. 19, 927–950 (2019). https://doi.org/10.1089/ast.2018.1914

    Article  ADS  Google Scholar 

  73. Sproß, L.: Development of the Earth’s Nitrogen Atmosphere in the Archean and during the Great Oxidation Event Transition, (2019), Master thesis, Karl-Franzens-Universität Graz.

  74. Stüeken, E.E., Som, S.M., Claire, M.W., Rugheimer, S., Scherf, M., Sproß, L., Tosi, N.N., Ueno, Y., Lammer, H.: Mission to Planet Earth: The First Two Billion Years. Sp. Sci. Rev. 216, Article number: 31 (2020).

  75. Rimmer, P.B., Ferus, M., Waldmann, I.P., Knížek, A., Kalvaitis, D., Ivanek, O., Kubelík, P., Yurchenko, S.N., Burian, T., Dostál, J., Juha, L., Dudžák, R., Krůs, M., Tennyson, J., Civiš, S., Archibald, A.T., Granville-Willett, A.: Identifiable acetylene features predicted for young earth-like exoplanets with reducing atmospheres undergoing heavy bombardment. Astrophys. J. 888, 21 (2019). https://doi.org/10.3847/1538-4357/ab55e8

    Article  ADS  Google Scholar 

  76. Hazen, R.M., Papineau, D., Leeker, W.B., Downs, R.T., Ferry, J.M., McCoy, T.J., Sverjensky, D.A., Yang, H.: Mineral evolution. Am. Mineral. 93, 1693–1720 (2008). https://doi.org/10.2138/am.2008.2955

    Article  ADS  Google Scholar 

  77. Hazen, R.M., Downs, R.T., Kah, L., Sverjensky, D.: Carbon Mineral Evolution. Rev. in Mineralogy and Geochemistry. 75, 79–107 (2013)

  78. Hazen, R.M., Ferry, J.M.: Mineral evolution: mineralogy in the fourth dimension. Elements. 6, 9–12 (2010). https://doi.org/10.2113/gselements.6.1.9

    Article  Google Scholar 

  79. Góbi, S., Kereszturi, Á.: Role of serpentinization in the thermal and connected mineral evolution of planetesimals – evaluating possible consequences for exoplanetary systems. Mon. Not. R. Astron. Soc. 466, 2099–2110 (2016). https://doi.org/10.1093/mnras/stw3223

    Article  ADS  Google Scholar 

  80. Lugaro, M., Ott, U., Kereszturi: Radioactive nuclei from cosmochronology to habitability, Progress in Particle and Nuclear Physics. 102, 1–47, (2018)

  81. Morris, M.A., Desch, S.J.: Phyllosilicate emission from protoplanetary disks: is the indirect detection of extrasolar water possible? Astrobiology. 9, 965–978 (2009). https://doi.org/10.1089/ast.2008.0316

    Article  ADS  Google Scholar 

  82. Ertem, G., Steudel, A., Emmerich, K., Lagaly, G., Schuhmann, R.: Correlation between the extent of catalytic activity and charge density of montmorillonites. Astrobiology. 10, 743–749 (2010). https://doi.org/10.1089/ast.2009.0436

    Article  ADS  Google Scholar 

  83. Hazen, R.M.: Paleomineralogy of the hadean eon: a preliminary species list. Am. J. Sci. 313, 807–843 (2013). https://doi.org/10.2475/09.2013.01

    Article  ADS  Google Scholar 

  84. Zahnle, K., Arndt, N., Cockell, C.S., Halliday, A.N., Nisbet, E.G., Selsis, F., Sleep, N.H.: Emergence of a habitable planet. Sp. Sci Rev. 129, 35–78 (2007)

    Article  ADS  Google Scholar 

  85. Babankova, D., Civis, S., Juha, L.: Chemical consequences of laser-induced breakdown in molecular gases. Prog. Quantum Electron. 30, 75–88 (2006). https://doi.org/10.1016/j.pquantelec.2006.09.001

    Article  ADS  Google Scholar 

  86. Ferus, M., Knížek, A., Civiš, S.: Meteorite-catalyzed synthesis of nucleosides and other prebiotic compounds. Proc. Natl. Acad. Sci. 112, (2015). https://doi.org/10.1073/pnas.1507471112

  87. Civiš, S., Szabla, R., Szyja, B.M., Smykowski, D., Ivanek, O., Knížek, A., Kubelík, P., Šponer, J., Ferus, M., Šponer, J.E.: TiO2-catalyzed synthesis of sugars from formaldehyde in extraterrestrial impacts on the early earth. Sci. Rep. 6, 23199 (2016). https://doi.org/10.1038/srep23199

    Article  ADS  Google Scholar 

  88. Ferus, M., Kubelik, P., Civis, S.: Laser spark Formamide decomposition studied by FT-IR spectroscopy. J. Phys. Chem. A. 115, 12132–12141 (2011). https://doi.org/10.1021/jp205413d

    Article  Google Scholar 

  89. Ferus, M., Laitl, V., Knizek, A., Kubelik, P., Sponer, J., Kara, J., Sponer, J.E., Lefloch, B., Cassone, G., Civis, S.: HNCO-based synthesis of formamide in planetary atmospheres. Astron. Astrophys. 616, (2018). https://doi.org/10.1051/0004-6361/201833003

  90. Ferus, M., Pietrucci, F., Saitta, A.M., Ivanek, O., Knizek, A., Kubelik, P., Krus, M., Juha, L., Dudzak, R., Dostál, J., Pastorek, A., Petera, L., Hrncirova, J., Saeidfirozeh, H., Shestivská, V., Sponer, J., Sponer, J.E., Rimmer, P., Civis, S., Cassone, G.: Prebiotic synthesis initiated in formaldehyde by laser 1262 plasma simulating high-velocity impacts. Astronomy & Astrophysics. 626(A52), 21 (2019). https://doi.org/10.1051/0004-6361/201935435

  91. Cassone, G., Saija, F., Sponer, J., Sponer, J.E., Ferus, M., Krus, M., Ciaravella, A., Jiménez-Escobar, A., Cecchi-Pestellini, C.: Dust motions in magnetized turbulence: source of chemical complexity. Astrophys. J. 866, L23 (2018). https://doi.org/10.3847/2041-8213/aae529

    Article  ADS  Google Scholar 

  92. Nejdl, L., Zemankova, K., Havlikova, M., Buresova, M., Hynek, D., Xhaxhiu, K., Mravec, F., Matouskova, M., Adam, V., Ferus, M., Kapus, J., Vaculovicova, M.: UV-induced nanoparticles-formation, properties and their potential role in origin of life. Nanomaterials. 10, 1529 (2020). https://doi.org/10.3390/nano10081529

    Article  Google Scholar 

  93. Fukuhara, M.: Possible generation of heat from nuclear fusion in Earth’s inner core. Sci. Rep. 6, 1–7 (2016). https://doi.org/10.1038/srep37740

    Article  Google Scholar 

  94. Huang, Y., Chubakov, V., Mantovani, F., Rudnick, R.L., McDonough, W.F.: A reference Earth model for the heat-producing elements and associated geoneutrino flux. Geochem. Geophys. Geosyst. 14, 2003–2029 (2013). https://doi.org/10.1002/ggge.20129

    Article  ADS  Google Scholar 

  95. Davies, J.H., Davies, D.R.: Earth’s surface heat flux. Solid Earth. 1, 5–24 (2010)

    Article  ADS  Google Scholar 

  96. Korenaga, J.: Urey ratio and the structure and evolution of Earth’s mantle. Rev. Geophys. 46, RG2007 (2008). https://doi.org/10.1029/2007RG000241

    Article  ADS  Google Scholar 

  97. Segura, A., Kasting, J.F., Meadows, V., Cohen, M., Scalo, J., Crisp, D., Butler, R.A.H., Tinetti, G.: Biosignatures from earth-like planets around M dwarfs. Astrobiology. 5, 706–725 (2005). https://doi.org/10.1089/ast.2005.5.706

    Article  ADS  Google Scholar 

  98. Sclater, J.G., Jaupart, C., Galson, D.: The heat flow through oceanic and continental crust and the heat loss of the earth. Rev. Geophys. 18, 269 (1980). https://doi.org/10.1029/RG018i001p00269

    Article  ADS  Google Scholar 

  99. Pollack, H.N., Hurter, S.J., Johnson, J.R.: Heat flow from the Earth’s interior: analysis of the global data set. Rev. Geophys. 31, 267 (1993). https://doi.org/10.1029/93RG01249

    Article  ADS  Google Scholar 

  100. Gando, A., Gando, Y., Ichimura, K., Ikeda, H., Inoue, K., Kibe, Y., Kishimoto, Y., Koga, M., Minekawa, Y., Mitsui, T., Morikawa, T., Nagai, N., Nakajima, K., Nakamura, K., Narita, K., Shimizu, I., Shimizu, Y., Shirai, J., Suekane, F., Suzuki, A., Takahashi, H., Takahashi, N., Takemoto, Y., Tamae, K., Watanabe, H., Xu, B.D., Yabumoto, H., Yoshida, H., Yoshida, S., Enomoto, S., Kozlov, A., Murayama, H., Grant, C., Keefer, G., Piepke, A., Banks, T.I., Bloxham, T., Detwiler, J.A., Freedman, S.J., Fujikawa, B.K., Han, K., Kadel, R., O’Donnell, T., Steiner, H.M., Dwyer, D.A., McKeown, R.D., Zhang, C., Berger, B.E., Lane, C.E., Maricic, J., Miletic, T., Batygov, M., Learned, J.G., Matsuno, S., Sakai, M., Horton-Smith, G.A., Downum, K.E., Gratta, G., Tolich, K., Efremenko, Y., Perevozchikov, O., Karwowski, H.J., Markoff, D.M., Tornow, W., Heeger, K.M., Decowski, M.P.: Partial radiogenic heat model for Earth revealed by geoneutrino measurements. Nat. Geosci. 4, 647–651 (2011). https://doi.org/10.1038/ngeo1205

    Article  ADS  Google Scholar 

  101. Zagórski, Z.P.: Radiation chemistry and origins of life on earth. Radiat. Phys. Chem. 66, 329–334 (2003). https://doi.org/10.1016/S0969-806X(02)00408-5

    Article  ADS  Google Scholar 

  102. Zagórski, Z.P., Kornacka, E.M.: Ionizing radiation : friend or foe of the origins of life? Orig. Life Evol. Biosph. 42, 503–505 (2012). https://doi.org/10.1007/s11084-012-9314-1

    Article  ADS  Google Scholar 

  103. Turcotte, D.L., Schubert, G.: Geodynamics: Applications of Continuum Physics to Geological Problems. Cambridge University Press (1982)

  104. Saladino, R., Bizzarri, B.M., Botta, L., Sponer, J., Sponer, J.E., Georgelin, T., Jaber, M., Rigaud, B., Kapralov, M., Timoshenko, G.N., Rozanov, A., Krasavin, E., Timperio, A.M., Di Mauro, E.: Proton irradiation: a key to the challenge of N-glycosidic bond formation in a prebiotic context. Sci. Rep. 7, (2017). https://doi.org/10.1038/s41598-017-15392-8

  105. Saladino, R., Carota, E., Botta, G., Kapralov, M., Timoshenko, G.N., Rozanov, A.Y., Krasavin, E., Di Mauro, E.: Meteorite-catalyzed syntheses of nucleosides and of other prebiotic compounds from formamide under proton irradiation. Proc. Natl. Acad. Sci. 112, E2746–E2755 (2015)

    Article  ADS  Google Scholar 

  106. Saladino, R., Carota, E., Botta, G., Kapralov, M., Timoshenko, G.N., Rozanov, A., Krasavin, E., Di Mauro, E.: First evidence on the role of heavy ion irradiation of meteorites and Formamide in the origin of biomolecules. Orig. Life Evol. Biosph. 1–7 (2016). https://doi.org/10.1007/s11084-016-9495-0

  107. Adam, Z.R., Hongo, Y., Cleaves II, H.J., Yi, R., Fahrenbach, A.C., Yoda, I., Aono, M.: Estimating the capacity for production of formamide by radioactive minerals on the prebiotic Earth. Sci. Rep. 8, (2018). https://doi.org/10.1038/s41598-017-18483-8

  108. Adam, Z.R.R., Hongo, Y., Cleaves, H.J., Yi, R., Fahrenbach, A.C.C., Yoda, I., Aono, M., Cleaves II, H.J., Yi, R., Fahrenbach, A.C.C., Yoda, I., Aono, M.: Estimating the capacity for production of formamide by radioactive minerals on the prebiotic earth. Sci. Rep. 8, 265 (2018). https://doi.org/10.1038/s41598-017-18483-8

    Article  ADS  Google Scholar 

  109. Adam, Z.: Actinides and life’s origins. Astrobiology. 7, 852–872 (2007). https://doi.org/10.1089/ast.2006.0066

    Article  ADS  Google Scholar 

  110. Ebisuzaki, T., Maruyama, S.: Nuclear geyser model of the origin of life: driving force to promote the synthesis of building blocks of life. Geosci. Front. 8, 275–298 (2017). https://doi.org/10.1016/j.gsf.2016.09.005

    Article  Google Scholar 

  111. Tu, L., Johnstone, C.P., Güdel, M., Lammer, H.: The extreme ultraviolet and X-ray Sun in Time: High-energy evolutionary tracks of a solar-like star. A&A. 577, L3 (2015). https://doi.org/10.1051/0004-6361/201526146

    Article  ADS  Google Scholar 

  112. Lammer, H, Zerkle, A L, Gebauer, S, Tosi, N, Noack, L, Scherf, M, Pilat-Lohinger, E, Güdel, M, Grenfell, J L, Godolt, M & Nikolaou, A: Origin and evolution of the atmospheres of early Venus, Earth and Mars. Astronomy and Astrophysics Review. 26, 2 (2018) https://doi.org/10.1007/s00159-018-0108-y

  113. Ferus, M., Pietrucci, F., Saitta, A.M., Knížek, A., Kubelík, P., Ivanek, O., Shestivska, V., Civiš, S.: Formation of nucleobases in a Miller-Urey reducing atmosphere. Proc. Natl. Acad. Sci. U. S. A. 114, (2017). https://doi.org/10.1073/pnas.1700010114

  114. Xu, J., Tsanakopoulou, M., Magnani, C.J., Szabla, R., Sponer, J.E., Sponer, J., Gora, R.W., Sutherland, J.D.: A prebiotically plausible synthesis of pyrimidine beta-ribonucleosides and their phosphate derivatives involving photoanomerization. Nat. Chem. 9, 303–309 (2017). https://doi.org/10.1038/NCHEM.2664

    Article  Google Scholar 

  115. Tsai, S.-M., Lyons, J.R., Grosheintz, L., Rimmer, P.B., Kitzmann, D., Heng, K.: VULCAN: an open-source, validated chemical kinetics python code for exoplanetary atmospheres. Astrophys. J. Suppl. Ser. 228, (2017). https://doi.org/10.3847/1538-4365/228/2/20

  116. Rotelli, L., Trigo-Rodriguez, J.M., Moyano-Cambero, C.E., Carota, E., Botta, L., Di Mauro, E., Saladino, R.: The key role of meteorites in the formation of relevant prebiotic molecules in a formamide/water environment. Sci. Rep. 6, 38888 (2016). https://doi.org/10.1038/srep38888

    Article  ADS  Google Scholar 

  117. Ardaseva, A., Rimmer, P.B., Waldmann, I., Rocchetto, M., Yurchenko, S.N., Helling, C., Tennyson, J.: Lightning chemistry on earth-like exoplanets. Mon. Not. R. Astron. Soc. 470, 187–196 (2017). https://doi.org/10.1093/mnras/stx1012

    Article  ADS  Google Scholar 

  118. Cassone, G., Sponer, J., Sponer, J.E., Pietrucci, F., Saitta, A.M., Saija, F.: Synthesis of (d)-erythrose from glycolaldehyde aqueous solutions under electric field. Chem. Commun. 54, 3211–3214 (2018). https://doi.org/10.1039/c8cc00045j

    Article  Google Scholar 

  119. Bourgalais, J., Carrasco, N., Changeat, Q., Venot, O., Jovanović, L., Pernot, P., Tennyson, J., Chubb, K.L., Yurchenko, S.N., Tinetti, G.: Ions in the thermosphere of exoplanets: observable constraints revealed by innovative laboratory experiments. Astrophys. J. 895, 77 (2020). https://doi.org/10.3847/1538-4357/ab8e2d

    Article  ADS  Google Scholar 

  120. Le Caër, S.: Water radiolysis: influence of oxide surfaces on H2 production under ionizing radiation. Water. 3, 235–253 (2011). https://doi.org/10.3390/w3010235

    Article  ADS  Google Scholar 

  121. Buxton, G. V., Greenstock, C.L., Helman, W.P., Ross, A.B.: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O− in aqueous solution. J. Phys. Chem. Ref. Data 17, 513–886 (1988). https://doi.org/10.1063/1.555805

  122. Azrague, K., Bonnefille, E., Pradines, V., Pimienta, V., Oliveros, E., Maurette, M.T., Benoit-Marquié, F.: Hydrogen peroxide evolution during V-UV photolysis of water. Photochem. Photobiol. Sci. 4, 406–408 (2005). https://doi.org/10.1039/b500162e

    Article  Google Scholar 

  123. Kumar, A., Kołaski, M., Lee, H.M., Kim, K.S.: Photoexcitation and photoionization dynamics of water photolysis. J. Phys. Chem. A. 112, 5502–5508 (2008). https://doi.org/10.1021/jp711485b

    Article  Google Scholar 

  124. Tomanová, K., Precek, M., Múčka, V., Vyšín, L., Juha, L., Čuba, V.: At the crossroad of photochemistry and radiation chemistry: formation of hydroxyl radicals in diluted aqueous solutions exposed to ultraviolet radiation. Phys. Chem. Chem. Phys. 19, 29402–29408 (2017). https://doi.org/10.1039/c7cp05125e

    Article  Google Scholar 

  125. Gonzalez, M.G., Oliveros, E., Wörner, M., Braun, A.M.: Vacuum-ultraviolet photolysis of aqueous reaction systems, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 5(3) 225–246 (2004)

  126. Ball, R., Brindley, J.: The power without the glory: multiple roles of hydrogen peroxide in mediating the origin of life. Astrobiology. 19, 675–684 (2019). https://doi.org/10.1089/ast.2018.1886

    Article  ADS  Google Scholar 

  127. Ball, R., Brindley, J.: Hydrogen peroxide thermochemical oscillator as driver for primordial RNA replication. J. R. Soc. Interface. 11, 20131052 (2014). https://doi.org/10.1098/rsif.2013.1052

    Article  Google Scholar 

  128. Foustoukos, D.I., Houghton, J.L., Seyfried, W.E., Sievert, S.M., Cody, G.D.: Kinetics of H2–O2–H2O redox equilibria and formation of metastable H2O2 under low temperature hydrothermal conditions. Geochim. Cosmochim. Acta. 75, 1594–1607 (2011). https://doi.org/10.1016/j.gca.2010.12.020

    Article  ADS  Google Scholar 

  129. Borda, M.J., Elsetinow, A.R., Schoonen, M.A., Strongin, D.R.: Pyrite-induced hydrogen peroxide formation as a driving force in the evolution of photosynthetic organisms on an early earth. Astrobiology. 1, 283–288 (2001). https://doi.org/10.1089/15311070152757474

    Article  ADS  Google Scholar 

  130. Johnson, A.P., Cleaves, H.J., Dworkin, J.P., Glavin, D.P., Lazcano, A., Bada, J.L.: The Miller volcanic spark discharge experiment. Sci. 322(80), 404 (2008). https://doi.org/10.1126/science.1161527

    Article  ADS  Google Scholar 

  131. Oberbeck, V.R., Marshall, J., Shen, T.: Prebiotic chemistry in clouds. J. Mol. Evol. 32, 296–303 (1991). https://doi.org/10.1007/BF02102187

    Article  ADS  Google Scholar 

  132. Schaefer, L., Fegley Jr., B.: Outgassing of ordinary chondritic material and some of its implications for the chemistry of asteroids, planets, and satellites. Icarus. 186, 462–483 (2007). https://doi.org/10.1016/j.icarus.2006.09.002

    Article  ADS  Google Scholar 

  133. Miller, S.L., Schlesinger, G.: The atmosphere of the primitive earth and the prebiotic synthesis of organic compounds. Adv. Sp. Res. 3, 47–53 (1983). https://doi.org/10.1016/0273-1177(83)90040-6

    Article  ADS  Google Scholar 

  134. Yuasa, S., Flory, D., Basile, B., Oró, J.: Abiotic synthesis of purines and other heterocyclic compounds by the action of electrical discharges. J. Mol. Evol. 21, 76–80 (1984). https://doi.org/10.1007/BF02100630

    Article  ADS  Google Scholar 

  135. Hill, R.D.: An efficient lightning energy-source on the early earth. Orig. Life Evol. Biosph. 22, 277–285 (1992). https://doi.org/10.1007/BF01810857

    Article  ADS  Google Scholar 

  136. Chyba, C., Sagan, C.: Electrical energy sources for organic synthesis on the early earth. Orig. Life Evol. Biosph. 21, 3–17 (1991). https://doi.org/10.1007/BF01809509

    Article  ADS  Google Scholar 

  137. Abelson, P.H.: Amino acids formed in primitive atmospheres. Sci. 124(80), 935 (1956). https://doi.org/10.1073/pnas.192568299

    Article  Google Scholar 

  138. Bahadur, K., Ranganayaki, S., Santamaria, L.: Photosynthesis of amino-acids from paraformaldehyde involving the fixation of nitrogen in the presence of colloidal molybdenum oxide as catalyst. Nature. 182, 1668 (1958)

    Article  ADS  Google Scholar 

  139. Oparin, A.I., Braunshtein, A.E., Pasynskii, A.G., Pavlovskaya, T.E., Clark, F.: Proceedings of international symposium on the origin of life on the earth. Pergamon, N. Y. : (1959)

  140. Ferus, M., Pietrucci, F., Saitta, A.M., Knížek, A., Kubelik, P., Ivanek, O., Shestivská, V., Civiš, S.: Formation of nucleobases in a miller-urey reducing atmosphere. Proc. Natl. Acad. Sci. USA. 114(17), 4306–4311 (2017)

  141. Civis, S., Ferus, M., Chernov, V.E., Zanozina, E.M., Juha, L.: Zn I spectra in the 1300-6500 cm(−1) range. J. Quant. Spectrosc. Radiat. Transf. 134, 64–73 (2014). https://doi.org/10.1016/j.jqsrt.2013.10.017

    Article  ADS  Google Scholar 

  142. Höerst, S.M., Yelle, R.V., Buch, A., Carrasco, N., Cernogora, G., Dutuit, O., Quirico, E., Sciamma-O’Brien, E., Smith, M.A., Somogyi, Á., Szopa, C., Thissen, R., Vuitton, V.: Formation of amino acids and nucleotide bases in a titan atmosphere simulation experiment. Astrobiology. 12, 809–817 (2012). https://doi.org/10.1089/ast.2011.0623

    Article  ADS  Google Scholar 

  143. Jaffe, D.A.: 12 the nitrogen cycle. Int. Geophys. 50, 263–284 (1992). https://doi.org/10.1016/S0074-6142(08)62695-9

    Article  Google Scholar 

  144. Jacob, D.J.: Introduction to atmospheric chemistry. Princeton University Press (1999)

  145. Galloway, J.N.: The global nitrogen cycle. In: Treatise on Geochemistry. pp. 557–583. Elsevier (2003)

  146. Fowler, D., Pyle, J.A., Raven, J.A., Sutton, M.A.: The global nitrogen cycle in the twenty-first century: introduction. Philos. Trans. R. Soc. B Biol. Sci. 368, 20130165–20130165 (2013). https://doi.org/10.1098/rstb.2013.0165

    Article  Google Scholar 

  147. Cooray: V.: 19. Interaction of lightning flashes with the Earth’s atmosphere. In: An Introduction to Lightning, pp. 1–386. Springer, Dordrecht (2015)

    Google Scholar 

  148. Navarro-González, R., Villagrán-Muniz, M., Sobral, H., Molina, L.T., Molina, M.J.: The physical mechanism of nitric oxide formation in simulated lightning. Geophys. Res. Lett. 28, 3867–3870 (2001). https://doi.org/10.1029/2001GL013170

    Article  ADS  Google Scholar 

  149. Martin, R.S., Mather, T.A., Pyle, D.M.: Volcanic emissions and the early earth atmosphere. Geochim. Cosmochim. Acta. 71, 3673–3685 (2007)

    Article  ADS  Google Scholar 

  150. Parkos, D., Pikus, A., Alexeenko, A., Melosh, H.J.: HCN production from impact ejecta on the early earth. AIP Conf. Proc. 1786, (2016). https://doi.org/10.1002/2016JA023638

  151. Arumainayagam, C.R., Garrod, R.T., Boyer, M.C., Hay, A.K., Bao, S.T., Campbell, J.S., Wang, J., Nowak, C.M., Arumainayagam, M.R., Hodge, P.J.: Extraterrestrial prebiotic molecules: photochemistry vs. radiation chemistry of interstellar ices. Chem. Soc. Rev. 48, 2293–2314 (2019). https://doi.org/10.1039/C7CS00443E

    Article  ADS  Google Scholar 

  152. Kundu, S., Prabhudesai, V.S., Krishnakumar, E.: Electron induced reactions in condensed mixtures of methane and ammonia. Phys. Chem. Chem. Phys. 19, 25723–25733 (2017). https://doi.org/10.1039/C7CP04490A

    Article  Google Scholar 

  153. Kubelík, P., Civiš, S., Pastorek, A., Zanozina, E. M., Chernov, V. E., Juha, L., Voronina, A. A.: FTIR laboratory measurement of Ne~{I} Rydberg states in 1.43--14.3 spectral range. A&A. 582, A12 (2015). https://doi.org/10.1051/0004-6361/201526442

  154. Civiš, S., Kubelík, P., Ferus, M., Zanozina, E.M., Pastorek, A., Naskidashvili, A.V., Chernov, V.E.: {FTIR} Laboratory Measurement of O~{I} Spectra in the 0.77{\textendash}12.5~$μ$m Spectral Range: Rydberg States and Oscillator Strengths. Astrophys. J. Suppl. Ser. 239, 11 (2018). https://doi.org/10.3847/1538-4365/aae5f8

    Article  ADS  Google Scholar 

  155. Civiš, S., Matulková, I., Cihelka, J., Kubelík, P., Kawaguchi, K., Chernov, V.E.: Low-excited f-, g- and h-states in Au, Ag and Cu observed by Fourier-transform infrared spectroscopy in the 1000{\textendash}7500 cm$^{−1}$region. J. Phys. B At. Mol. Opt. Phys. 44, 105002 (2011). https://doi.org/10.1088/0953-4075/44/10/105002

    Article  ADS  Google Scholar 

  156. Civiš, S., Ferus, M., Kubelík, P., Chernov, V.E., Zanozina, E.M.: Li~I spectra in the 4.65–8.33 micron range: high-L states and oscillator strengths. A&A. 545, A61 (2012). https://doi.org/10.1051/0004-6361/201219852

  157. Kobayashi, K., Geppert, W.D., Carrasco, N., Holm, N.G., Mousis, O., Palumbo, M.E., Waite, J.H., Watanabe, N., Ziurys, L.M.: Laboratory studies of methane and its relationship to prebiotic chemistry. Astrobiology. 17, 786–812 (2017). https://doi.org/10.1089/ast.2016.1492

    Article  ADS  Google Scholar 

  158. Felton, R., Neveu, M., Domagal-Goldman, S.D., Desch, S., Arney, G., Felton, R., Neveu, M., Domagal-Goldman, S.D., Desch, S., Arney, G.: Developing tighter constraints on exoplanet biosignatures by modeling atmospheric haze. AAS. 231, 439.23 (2018)

    ADS  Google Scholar 

  159. Zerkle, A., Izon, G.J., Claire, M.: State of the haze: the causes and consequences of a hydrocarbon-rich Neoarchean atmosphere. AGU Fall Meeting Abstracts. PP21D-03 (2016)

  160. Khare, B.N., McKay, C., Wilhite, P., Beeler, D., Carter, driver during the Precambrian eon-Mvondo, D., Cruikshank, D., Embaye, T.: Organic matter in the titan lakes, and comparison with primitive earth. In: AIP Conf. Proc. 1543, 77–88 (2013)

  161. Kasting, J.F.: Methane as a climate driver during the Precambrian eon. AGU Fall Meetings abstracts. U33A-01 (2013)

  162. Maillard, J., Hupin, S., Carrasco, N., Schmitz-Afonso, I., Gautier, T., Afonso, C.: Structural elucidation of soluble organic matter: application to Titan’s haze. Icarus. 340, 113627 (2020). https://doi.org/10.1016/j.icarus.2020.113627

    Article  Google Scholar 

  163. Neish, C.D., Somogyi, Á., Smith, M.A.: Titan’s primordial soup: formation of amino acids via low-temperature hydrolysis of tholins. Astrobiology. 10, 337–347 (2010). https://doi.org/10.1089/ast.2009.0402

    Article  ADS  Google Scholar 

  164. Hörst, S.M., Tolbert, M.A.: In situ measurements of the size and density of titan aerosol analogs. Astrophys. J. Lett. 770, L10 (2013). https://doi.org/10.1088/2041-8205/770/1/L10

    Article  ADS  Google Scholar 

  165. Arney, G., Meadows, V., Domagal-Goldman, S., Deming, D., Robinson, T.D., Tovar, G., Wolf, E., Schwieterman, E., Arney, G., Meadows, V., Domagal-Goldman, S., Deming, D., Robinson, T.D., Tovar, G., Wolf, E., Schwieterman, E.: Pale Orange dots: the impact of organic haze on the habitability and detectability of earthlike exoplanets. DPS. 122, 13 (2016)

    Google Scholar 

  166. Arney, G., Domagal-Goldman, S.D., Meadows, V.S.: Organic haze as a biosignature in anoxic earth-like atmospheres. Astrobiology. 18, 311–329 (2018). https://doi.org/10.1089/ast.2017.1666

    Article  ADS  Google Scholar 

  167. Arney, G., Domagal-Goldman, S.D., Meadows, V.S., Wolf, E.T., Schwieterman, E., Charnay, B., Claire, M., Hébrard, E., Trainer, M.G.: The pale Orange dot: the Spectrum and habitability of hazy Archean earth. Astrobiology. 16, 873–899 (2016). https://doi.org/10.1089/ast.2015.1422

    Article  ADS  Google Scholar 

  168. Ugelow, M.S., De Haan, D.O., Hörst, S.M., Tolbert, M.A.: The effect of oxygen on organic haze properties. Astrophys. J. 859, L2 (2018). https://doi.org/10.3847/2041-8213/aac2c7

    Article  ADS  Google Scholar 

  169. Charnay, B., Sauterey, B., Lefèvre, F., Ferriere, R., Mazevet, S., Affholder, A., Vatant, J., Burgalat, J., Rannou, P., Jaziri, A.: photochemistry of the early Earth and co-evolution of life and atmosphere. EPSC-DPS joint meeting 2019. In: EPSC-DPS Joint Meeting Geneva. 13, EPSC-DPS2019-739-1 (2019)

  170. Berry, J.L., Ugelow, M.S., Tolbert, M.A., Browne, E.C.: The influence of gas-phase chemistry on organic haze formation. Astrophys. J. 885, L6 (2019). https://doi.org/10.3847/2041-8213/ab4b5b

    Article  ADS  Google Scholar 

  171. Hörst, S.M., Tolbert, M.A.: The Effect of Carbon Monoxide on Planetary Haze Formation. ApJ. 781, 53 (2013). https://doi.org/10.1088/0004-637X/781/1/53

  172. Zellem, R.T., Swain, M.R., Cowan, N.B., Bryden, G., Komacek, T.D., Colavita, M., Ardila, D., Roudier, G.M., Fortney, J.J., Bean, J., Line, M.R., Griffith, C.A., Shkolnik, E.L., Kreidberg, L., Moses, J.I., Showman, A.P., Stevenson, K.B., Wong, A., Chapman, J.W., Ciardi, D.R., Howard, A.W., Kataria, T., Kempton, E.M.R., Latham, D., Mahadevan, S., Meléndez, J., Parmentier, V.: Constraining exoplanet metallicities and aerosols with the contribution to Ariel spectroscopy of exoplanets (CASE). Publ. Astron. Soc. Pacific. 131, (2019). https://doi.org/10.1088/1538-3873/ab2d54

  173. Bean, J., Parmentier, V., Mansfield, M., Cowan, N., Kempton, E., Desert, J.-M., Swain, M., Dang, L., Bell, T., Keating, D., Zellem, R., Fortney, J., Line, M., Kreidberg, L., Stevenson, K.: Revealing Fact or Fiction in Spitzer Exoplanet Phase Curve Trends. sptz. 14059 (2018), https://ui.adsabs.harvard.edu/abs/2018sptz.prop14059B

  174. Saitta, A.M., Saija, F.: Miller experiments in atomistic computer simulations. Proc. Natl. Acad. Sci. U. S. A. 111, 13768–13773 (2014). https://doi.org/10.1073/pnas.1402894111

    Article  ADS  Google Scholar 

  175. Cleaves, H.J., Chalmers, J.H., Lazcano, A., Miller, S.L., Bada, J.L.: A reassessment of prebiotic organic synthesis in neutral planetary atmospheres. Orig. Life Evol. Biosph. 38, 105–115 (2008). https://doi.org/10.1007/s11084-007-9120-3

    Article  ADS  Google Scholar 

  176. Saladino, R., Botta, G., Delfino, M., Di Mauro, E.: Meteorites as catalysts for prebiotic chemistry. Chem. Eur. J. 19, 16916–16922 (2013). https://doi.org/10.1002/chem.201303690

  177. McCollom, T.M.: Miller-Urey and beyond: what have we learned about prebiotic organic synthesis reactions in the past 60 years? In: Annu. Rev. Earth Planet. Sci. pp. 207–229 (2013)

  178. Joyce, G.F.: RNA evolution and the origins of life. Nature. 338, 217–224 (1989). https://doi.org/10.1038/338217a0

    Article  ADS  Google Scholar 

  179. Gilbert, W.: Origin of life: the RNA world. Nature. 319, 618 (1986)

    Article  ADS  Google Scholar 

  180. Rich, A.: On the problesm of evolution and biochemical information transfer. In: Kasha, M., Pullman, B. (eds.) Horizons in Biochemistry, pp. 103–126. Academic Press, New York (1962)

    Google Scholar 

  181. Kruger, K., Grabowski, P.J., Zaug, A.J., Sands, J., Gottschling, D.E., Cech, T.R.: Self-splicing RNA - Auto-excision and auto-cyclization of the ribosomal-RNA intervening sequence of tetrahymena. Cell. 31, 147–157 (1982). https://doi.org/10.1016/0092-8674(82)90414-7

    Article  Google Scholar 

  182. Crick, F.: On Protein Synthesis. Symp. Soc. Exp. Biol. 12(12), 138–163 (1958)

    Google Scholar 

  183. Kejnovský, E.: Tajemství genů. Academia, Praha (2015)

  184. Ferus, M., Kubelik, P., Kawaguchi, K., Dryahina, K., Spanel, P., Civis, S.: HNC/HCN ratio in acetonitrile, Formamide, and BrCN discharge. J. Phys. Chem. A. 115, 1885–1899 (2011). https://doi.org/10.1021/jp1107872

    Article  Google Scholar 

  185. Levy, M., Miller, S.L., Oro, J.: Production of guanine from NH4CN polymerizations. J. Mol. Evol. 49, 165–168 (1999). https://doi.org/10.1007/PL00006539

    Article  ADS  Google Scholar 

  186. Ferris, J.P., Wos, J.D., Nooner, D.W., Oró, J.: Chemical evolution of 21 Aminoacids released on hydrolysis of HCN oligomers. J. Mol. Evol. 3, 225–231 (1974). https://doi.org/10.1007/BF01797455

    Article  ADS  Google Scholar 

  187. Dezulian, R., Canova, F., Barbanotti, S., Orsenigo, F., Redaelli, R., Vinci, T., Lucchini, G., Batani, D., Rus, B., Polan, J., Kozlová, M., Stupka, M., Praeg, A.R., Homer, P., Havlicek, T., Soukup, M., Krousky, E., Skala, J., Dudzak, R., Pfeifer, M., Nishimura, H., Nagai, K., Ito, F., Norimatsu, T., Kilpio, A., Shashkov, E., Stuchebrukhov, I., Vovchenko, V., Chernomyrdin, V., Krasuyk, I.: Hugoniot data of plastic foams obtained from laser-driven shocks. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 73, (2006). https://doi.org/10.1103/PhysRevE.73.047401

  188. Jungwirth, K., Cejnarova, A., Juha, L., Kralikova, B., Krasa, J., Krousky, E., Krupickova, P., Laska, L., Masek, K., Mocek, T., Pfeifer, M., Präg, A., Renner, O., Rohlena, K., Rus, B., Skala, J., Straka, P., Ullschmied, J.: The Prague Asterix laser system. Phys. Plasmas. 8, 2495–2501 (2001). https://doi.org/10.1063/1.1350569

    Article  ADS  Google Scholar 

  189. Civiš, S., Knížek, A., Rimmer, P.B., Ferus, M., Kubelík, P., Zukalová, M., Kavan, L., Chatzitheodoridis, E.: Formation of methane and (per)chlorates on Mars. ACS Earth Sp. Chem. 3, 221–232 (2019). https://doi.org/10.1021/acsearthspacechem.8b00104

    Article  ADS  Google Scholar 

  190. Civis, S., Kubelik, P., Ferus, M.: Time-resolved Fourier transform emission spectroscopy of he/CH4 in a positive column discharge. J. Phys. Chem. A. 116, 3137–3147 (2012). https://doi.org/10.1021/jp211772d

    Article  Google Scholar 

  191. Stehlé, C., Kozlová, M., Larour, J., Nejdl, J., Champion, N., Barroso, P., Suzuki-Vidal, F., Acef, O., Delattre, P.A., Dostál, J., Krus, M., Chièze, J.P.: New probing techniques of radiative shocks. Opt. Commun. 285, 64–69 (2012). https://doi.org/10.1016/j.optcom.2011.09.008

    Article  ADS  Google Scholar 

  192. Knížek, A.: Experimental study of chemical evolution of biomolecules under early Earth conditions, http://hdl.handle.net/20.500.11956/97896, (2018), master thesis, Charles University, Prague

  193. Bredereck, H., Gompper, R., Morlock, G.: Neue pyrimidin-synthese aus beta-dicarbonyl - verbindungen und formamid. Angew. Chem. Int. Ed. 68, 151 (1956). https://doi.org/10.1002/ange.19560680404

  194. Saladino, R., Crestini, C., Costanzo, G., Negri, R., Di Mauro, E.: A possible prebiotic synthesis of purine, adenine, cytosine, and 4(3H)-pyrimidinone from formamide: implications for the origin of life. Bioorg. Med. Chem. 9, 1249–1253 (2001). https://doi.org/10.1016/S0968-0896(00)00340-0

  195. Ferus, M., Knížek, A., Šponer, J., Šponer, J.E., Civiš, S.: Radical synthesis of nucleic acid bases from formamide in impact plasma. Chem. List. 109, 406–414 (2015)

    Google Scholar 

  196. Pastorek, A., Hrnčířová, J., Jankovič, L., Nejdl, L., Civiš, S., Ivanek, O., Shestivska, V., Knížek, A., Kubelík, P., Šponer, J., Petera, L., Křivková, A., Cassone, G., Vaculovičová, M., Šponer, J.E., Ferus, M.: Prebiotic synthesis at impact craters: the role of Fe-clays and iron meteorites. Chem. Commun. 55, 10563–10566 (2019). https://doi.org/10.1039/C9CC04627E

    Article  Google Scholar 

  197. Sponer, J.E., Mohammadi, E., Petera, L., Saeidfirozeh, H., Knížek, A., Kubelík, P., Krůs, M., Juha, L., Civiš, S., Coulon, R., Malina, O., Ugolotti, J., Ranc, V., Otyepka, M., Šponer, J., Ferus, M., Dudzak, R.: Formic acid, a ubiquitous but overlooked component of the early earth atmosphere. Chem. A Eur. J., 26(52), 12075-12080 (2020). https://doi.org/10.1002/chem.202000323

  198. Piast, R.W.: Shannon’s information, Bernal’s biopoiesis and Bernoulli distribution as pillars for building a definition of life. J. Theor. Biol. 470, 101–107 (2019). https://doi.org/10.1016/j.jtbi.2019.03.009

    Article  ADS  Google Scholar 

  199. Sasselov, D.D., Grotzinger, J.P., Sutherland, J.D.: The origin of life as a planetary phenomenon. Sci. Adv. 6, eaax3419 (2020). https://doi.org/10.1126/sciadv.aax3419

    Article  ADS  Google Scholar 

  200. White, L.M., Shibuya, T., Vance, S.D., Christensen, L.E., Bhartia, R., Kidd, R., Hoffmann, A., Stucky, G.D., Kanik, I., Russell, M.J.: Simulating serpentinization as it could apply to the emergence of life using the JPL hydrothermal reactor. Astrobiology. 20, 307–326 (2020). https://doi.org/10.1089/ast.2018.1949

    Article  ADS  Google Scholar 

  201. Cuéllar-Cruz, M., Schneider, D.K., Stojanoff, V., Islas, S.R., Sánchez-Puig, N., Arreguín-Espinosa, R., Delgado, J.M., Moreno, A.: Formation of crystalline silica-carbonate biomorphs of alkaline earth metals (Ca, Ba, Sr) from ambient to Low temperatures: chemical implications during the primitive Earth’s life. Cryst. Growth Des. 20, 1186–1195 (2020). https://doi.org/10.1021/acs.cgd.9b01473

    Article  Google Scholar 

  202. Saladino, R., Di Mauro, E., García-Ruiz, J.M.: A universal geochemical scenario for Formamide condensation and prebiotic chemistry. Chem. A Eur. J. 25, 3181–3189 (2019). https://doi.org/10.1002/chem.201803889

    Article  Google Scholar 

  203. Saladino, R., Botta, G., Bizzarri, B.M., Di Mauro, E., Garcia Ruiz, J.M.: A global scale scenario for prebiotic chemistry: silica-based self-assembled mineral structures and Formamide. Biochemistry. (2016). https://doi.org/10.1021/acs.biochem.6b00255

  204. Sakhno, Y., Battistella, A., Mezzetti, A., Jaber, M., Georgelin, T., Michot, L., Lambert, J.-F.: One step up the ladder of prebiotic complexity: formation of nonrandom linear polypeptides from binary Systems of Amino Acids on silica. Chem. A Eur. J. 25, 1275–1285 (2019). https://doi.org/10.1002/chem.201803845

    Article  Google Scholar 

  205. Mattia Bizzarri, B., Botta, L., Pérez-Valverde, M.I., Saladino, R., Di Mauro, E., García-Ruiz, J.M.: Silica metal oxide vesicles catalyze comprehensive prebiotic chemistry. Chem. A Eur. J. 24, 8126–8132 (2018). https://doi.org/10.1002/chem.201706162

    Article  Google Scholar 

  206. Saladino, R., Šponer, J.E., Šponer, J., Costanzo, G., Pino, S., Mauro, E. Di: Chemomimesis and molecular darwinism in action: From abiotic generation of nucleobases to nucleosides and RNA, http://www.ncbi.nlm.nih.gov/pubmed/29925796, (2018)

  207. Saladino, R., Botta, L., Di Mauro, E.: The Prevailing Catalytic Role of Meteorites in Formamide Prebiotic Processes, Life, 8(1), 6 (2018)

  208. Saladino, R., Botta, G., Pino, S., Costanzo, G., Di Mauro, E.: Genetics first or metabolism first? The formamide clue. Chem. Soc. Rev. 41, 5526–5565 (2012). https://doi.org/10.1039/c2cs35066a

    Article  Google Scholar 

  209. Bizzarri, B.M., Šponer, J.E., Šponer, J., Cassone, G., Kapralov, M., Timoshenko, G.N., Krasavin, E., Fanelli, G., Timperio, A.M., Di Mauro, E., Saladino, R.: Meteorite-assisted phosphorylation of adenosine under proton irradiation conditions. ChemSystemsChem. syst.201900039 (2019). https://doi.org/10.1002/syst.201900039

  210. Costanzo, G., Pino, S., Botta, G., Saladino, R., Di Mauro, E.: May cyclic nucleotides be a source for abiotic RNA synthesis? Orig. Life Evol. Biosph. 41, 559–562 (2011). https://doi.org/10.1007/s11084-011-9249-y

    Article  ADS  Google Scholar 

  211. Sponer, J.E., Sponer, J., Novakova, O., Brabec, V., Sedo, O., Zdrahal, Z., Costanzo, G., Pino, S., Saladino, R., Di Mauro, E.: Emergence of the first catalytic oligonucleotides in a Formamide-based origin scenario. Chem. Eur. J. 22, 3572–3586 (2016). https://doi.org/10.1002/chem.201503906

    Article  Google Scholar 

  212. Chatzitheodoridis, E., Haigh, S., Lyon, I.: A conspicuous clay ovoid in Nakhla: evidence for subsurface hydrothermal alteration on Mars with implications for astrobiology. Astrobiology. 14, 651–693 (2014). https://doi.org/10.1089/ast.2013.1069

    Article  ADS  Google Scholar 

  213. Menez, B., Pisapia, C., Andreani, M., Jamme, F., Vanbellingen, Q.P., Brunelle, A., Richard, L., Dumas, P., Refregiers, M.: Abiotic synthesis of amino acids in the recesses of the oceanic lithosphere. Nature. 564, 59–63 (2018). https://doi.org/10.1038/s41586-018-0684-z

    Article  ADS  Google Scholar 

  214. Saladino, R., Neri, V., Crestini, C.: Role of clays in the prebiotic synthesis of sugar derivatives from formamide. In: Philosophical Magazine. pp. 2329–2337. Taylor & Francis Group (2010)

  215. Cairns-Smith, A.G. Alexander G.: Seven clues to the origin of life. Cambridge University Press (2000), ISBN-13 : 978-0521398282

  216. Wei, H., Wang, E.: Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem. Soc. Rev. 42, 6060–6093 (2013). https://doi.org/10.1039/c3cs35486e

    Article  Google Scholar 

  217. Huang, X.-L.: Hydrolysis of phosphate esters catalyzed by inorganic Iron oxide nanoparticles acting as biocatalysts. Astrobiology. 18, 294–310 (2018). https://doi.org/10.1089/ast.2016.1628

    Article  ADS  Google Scholar 

  218. Walther, R., Winther, A.K., Fruergaard, A.S., van den Akker, W., Sørensen, L., Nielsen, S.M., Jarlstad Olesen, M.T., Dai, Y., Jeppesen, H.S., Lamagni, P., Savateev, A., Pedersen, S.L., Frich, C.K., Vigier-Carrière, C., Lock, N., Singh, M., Bansal, V., Meyer, R.L., Zelikin, A.N.: Identification and directed development of non-organic catalysts with apparent pan-enzymatic mimicry into Nanozymes for efficient prodrug conversion. Angew. Chem. Int. Ed. 58, 278–282 (2019). https://doi.org/10.1002/anie.201812668

  219. Zhang, J., Liu, J.: Light-activated nanozymes: catalytic mechanisms and applications. Nanoscale. 12, 2914–2923 (2020). https://doi.org/10.1039/C9NR10822J

    Article  Google Scholar 

  220. Shao, M., Zhang, R., Wang, C., Hu, B., Pang, D., Xie, Z.: Living cell synthesis of CdSe quantum dots: manipulation based on the transformation mechanism of intracellular Se-precursors. Nano Res. 11, 2498–2511 (2018). https://doi.org/10.1007/s12274-017-1873-z

    Article  Google Scholar 

  221. Mota-Morales, J.D., Sánchez-Leija, R.J., Carranza, A., Pojman, J.A., del Monte, F., Luna-Bárcenas, G.: Free-radical polymerizations of and in deep eutectic solvents: green synthesis of functional materials. Prog. Polym. Sci. 78, 139–153 (2018). https://doi.org/10.1016/j.progpolymsci.2017.09.005

    Article  Google Scholar 

  222. Caetano-Anollés, G., Kim, H.S., Mittenthal, J.E.: The origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture. Proc. Natl. Acad. Sci. U. S. A. 104, 9358–9363 (2007). https://doi.org/10.1073/pnas.0701214104

    Article  ADS  Google Scholar 

  223. Puzzarini, C., Bloino, J., Tasinato, N., Barone, V.: Accuracy and Interpretability: the Devil and the Holy Grail. New Routes across Old Boundaries in Computational Spectroscopy, Chem. Rev. 119(13), 8131–8191 (2019)

  224. Skouteris, D., Balucani, N., Ceccarelli, C., Faginas Lago, N., Codella, C., Falcinelli, S., Rosi, M.: Interstellar dimethyl ether gas-phase formation: a quantum chemistry and kinetics study. Mon. Not. R. Astron. Soc. 482, 3567–3575 (2018). https://doi.org/10.1093/mnras/sty2903

    Article  ADS  Google Scholar 

  225. Lefloch, B., Bachiller, R., Ceccarelli, C., Cernicharo, J., Codella, C., Fuente, A., Kahane, C., López-Sepulcre, A., Tafalla, M., Vastel, C., Caux, E., González-García, M., Bianchi, E., Gómez-Ruiz, A., Holdship, J., Mendoza, E., Ospina-Zamudio, J., Podio, L., Quénard, D., Roueff, E., Sakai, N., Viti, S., Yamamoto, S., Yoshida, K., Favre, C., Monfredini, T., Quitián-Lara, H.M., Marcelino, N., Boechat-Roberty, H.M., Cabrit, S.: Astrochemical evolution along star formation: overview of the IRAM Large Program ASAI. Mon. Not. R. Astron. Soc. 477, 4792–4809 (2018). https://doi.org/10.1093/mnras/sty937

    Article  ADS  Google Scholar 

  226. Kahane, C., Ceccarelli, C., Faure, A., Caux, E.: Detection of formamide, the simplest but crucial amide, in a solar-type protostar. Astrophys. J. Lett. 763, (2013). https://doi.org/10.1088/2041-8205/763/2/L38

  227. Solomon, P.M.: Interstellar molecules. Phys. Today. 26, 32–40 (1973). https://doi.org/10.1063/1.3127983

    Article  Google Scholar 

  228. Gottlieb, C.A., Palmer, P., Rickard, L.J., Zuckerman, B.: Studies of interstellar formamide. Astrophys. J. 182, 699–710 (1973). https://doi.org/10.1086/152178

    Article  ADS  Google Scholar 

  229. Lis, D.C., Mehringer, D.M., Benford, D., Gardner, M., Phillips, T.G., Bockelee-Morvan, D., Biver, N., Colom, P., Crovisier, J., Despois, D., Rauer, H.: New molecular species in comet C/1995 O1 (Hale-Bopp) observed with the Caltech submillimeter observatory. Earth Moon Planets. 78, 13–20 (1997). https://doi.org/10.1023/A:1006281802554

    Article  ADS  Google Scholar 

  230. Hudson, R.L., Moore, M.H.: Reactions of nitriles in ices relevant to titan, comets, and the interstellar medium: formation of cyanate ion, ketenimines, and isonitriles. Icarus. 172, 466–478 (2004). https://doi.org/10.1016/j.icarus.2004.06.011

    Article  ADS  Google Scholar 

  231. Adande, G.R., Woolf, N.J., Ziurys, L.M.: Observations of interstellar formamide: availability of a prebiotic precursor in the galactic habitable zone. Astrobiology. 13, 439–453 (2013). https://doi.org/10.1089/ast.2012.0912

    Article  ADS  Google Scholar 

  232. López-Sepulcre, A., Jaber, A.A., Mendoza, E., Lefloch, B., Ceccarelli, C., Vastel, C., Bachiller, R., Cernicharo, J., Codella, C., Kahane, C., Kama, M., Tafalla, M.: Shedding light on the formation of the pre-biotic molecule formamide with ASAI. Mon. Not. R. Astron. Soc. 449, 2438–2458 (2015). https://doi.org/10.1093/mnras/stv377

    Article  ADS  Google Scholar 

  233. Al-Edhari, A.J., Ceccarelli, C., Kahane, C., Viti, S., Balucani, N., Caux, E., Faure, A., Lefloch, B., Lique, F., Mendoza, E., Quenard, D., Wiesenfeld, L.: History of the solar-type protostar IRAS 16293-2422 as told by the cyanopolyynes. Astron. Astrophys. 597, (2017). https://doi.org/10.1051/0004-6361/201629506

  234. Jørgensen, J.K., Favre, C., Bisschop, S.E., Bourke, T.L., Van Dishoeck, E.F., Schmalzl, M.: Detection of the simplest sugar, glycolaldehyde, in a solar-type protostar with ALMA. Astrophys. J. Lett. 757, (2012). https://doi.org/10.1088/2041-8205/757/1/L4

  235. Lefloch, B., Vastel, C., Viti, S., Jimenez-Serra, I., Codella, C., Podio, L., Ceccarelli, C., Mendoza, E., Lepine, J.R.D., Bachiller, R.: Phosphorus-bearing molecules in solar-type star-forming regions: first PO detection. MNRAS. 462, 3937–3944 (2016). https://doi.org/10.1093/mnras/stw1918

    Article  ADS  Google Scholar 

  236. Schöier, F.L., Jorgensen, J.K., van Dishoeck, E.F., Blake, G.A.: Does IRAS 16293–2422 have a hot core? Chemical inventory and abundance changes in its protostellar environment. A&A. 390, 1001–1021 (2002). https://doi.org/10.1051/0004-6361:20020756

  237. Walsh, C., Loomis, R.A., Öberg, K.I., Kama, M., M.L.R van‘t Hoff, Millar, T.J., Aikawa, Y., Herbst, E., Weaver, S.L.W., Nomura, H.: First detection of gas-phase methanol in a protoplanetary disk. Astrophys. J. Lett. 823, L10 (2016). https://doi.org/10.3847/2041-8205/823/1/L10

  238. Jheeta, S.: Final Frontiers: the Hunt for Life Elsewhere in the Universe, Astrophys. Space. Sci. 348, 1–10 (2013)

  239. Afanasiev, V.L., Kalenichenko, V.V., Karachentsev, I.D.: Detection of an Intergalactic Meteor Particle with the 6-M Telescope, Astrophys. Bul., 62, 301–310 (2007)

  240. Siraj, A., Loeb, A.: Discovery of a Meteor of Interstellar Origin. (2019), arXiv:1904.07224 [astro-ph.EP]

  241. Siraj, A., Loeb, A.: Probing Extrasolar Planetary Systems with Interstellar Meteors. (2019), arXiv:1906.03270 [astro-ph.EP]

  242. The ‘Oumuamua ISSI Team: The Natural History of ‘Oumuamua. Nature Astronomy, 3, 594–602 (2019)

  243. Gounelle, M., Spurny, P., Bland, P.A.: The orbit and atmospheric trajectory of the Orgueil meteorite from historical records. Meteorit. Planet. Sci. 41, 135–150 (2006). https://doi.org/10.1111/j.1945-5100.2006.tb00198.x

    Article  ADS  Google Scholar 

  244. List of meteorites with a complete “lineage”, URL: https://cs.wikipedia.org/wiki/Seznam_meteorit%C5%AF_s_rodokmenem, Accessed: 2.11.2020

  245. Ferus, M., Petera, L., Koukal, J., Lenža, L., Drtinová, B., Haloda, J., Matýsek, D., Pastorek, A., Laitl, V., Poltronieri, R.C., Domingues, M.W., Gonçalves, G., del Olmo Sato, R., Knížek, A., Kubelík, P., Křivková, A., Srba, J., di Pietro, C.A., Bouša, M., Vaculovič, T., Civiš, S.: Elemental composition, mineralogy and orbital parameters of the Porangaba meteorite. Icarus. 341, 113670 (2020). https://doi.org/10.1016/J.ICARUS.2020.113670

  246. Gourier, D., Binet, L., Calligaro, T., Cappelli, S., Vezin, H., Bréhéret, J., Hickman-Lewis, K., Gautret, P., Foucher, F., Campbell, K., Westall, F.: Extraterrestrial organic matter preserved in 3.33 Ga sediments from Barberton, South Africa. Geochim. Cosmochim. Acta. 258, 207–225 (2019). https://doi.org/10.1016/J.GCA.2019.05.009

    Article  ADS  Google Scholar 

  247. Zahnle, K.J., Sleep, N.H., Thomas, P.J., Hicks, R.D., Chyba, C.F., McKay, C.P.: Comets and the Origin and Evolution of Life. SPRINGER, Berlin (2006)

    Google Scholar 

  248. Goesmann, F., Rosenbauer, H., Bredehoeft, J.H., Cabane, M., Ehrenfreund, P., Gautier, T., Giri, C., Krueger, H., Le Roy, L., MacDermott, A.J., McKenna-Lawlor, S., Meierhenrich, U.J., Munoz Caro, G.M., Raulin, F., Roll, R., Steele, A., Steininger, H., Sternberg, R., Szopa, C., Thiemann, W., Ulamec, S.: Organic compounds on comet 67P/Churyumov-Gerasimenko revealed by COSAC mass spectrometry. Science. (80), 349 (2015). https://doi.org/10.1126/science.aab0689

  249. Benneke, B., Wong, I., Piaulet, C., Knutson, H.A., Lothringer, J., Morley, C.V., Crossfield, I.J.M., Gao, P., Greene, T.P., Dressing, C., Dragomir, D., Howard, A.W., McCullough, P.R., Kempton, E.M.-R., Fortney, J.J., Fraine, J.: Water vapor and clouds on the habitable-zone sub-Neptune exoplanet K2-18b. Astrophys. J. 887, L14 (2019). https://doi.org/10.3847/2041-8213/ab59dc

    Article  ADS  Google Scholar 

  250. Grillmair, C.J., Charbonneau, D., Burrows, A., Armus, L., Stauffer, J., Meadows, V., Van Cleve, J., Levine, D.: A Spitzer spectrum of the exoplanet HD 189733b. Astrophys. J. 658, L115–L118 (2007). https://doi.org/10.1086/513741

    Article  ADS  Google Scholar 

  251. CNES, ESA: COROT, https://corot.cnes.fr/en/COROT/index.htm

  252. Johnson, M.: Kepler and K2, https://www.nasa.gov/mission_pages/kepler/main/index.html

  253. ESA: Gaia, https://sci.esa.int/web/gaia/

  254. Garner, R.: TESS Exoplanet Mission, https://www.nasa.gov/tess-transiting-exoplanet-survey-satellite

  255. ESA: CHEOPS, http://www.esa.int/Science_Exploration/Space_Science/Cheops

  256. NASA: James Webb Space Telescope, https://www.jwst.nasa.gov/

  257. ESA: PLATO, https://sci.esa.int/web/plato/

  258. NASA: HabEx, https://www.jpl.nasa.gov/habex/

  259. NASA: LUVOIR, 2020-08-18

  260. Cavosie, A.J., Valley, J.W., Wilde, S.A.: Magmatic delta O-18 in 4400-3900 ma detrital zircons: a record of the alteration and recycling of crust in the early Archean. Earth Planet. Sci. Lett. 235, 663–681 (2005). https://doi.org/10.1016/j.epsl.2005.04.028

    Article  ADS  Google Scholar 

  261. Tinetti, G., Drossart, P., Eccleston, P., Hartogh, P., Leconte, J., Giusi, M., Ollivier, M., Turrini, D., Vandenbussche, B., Wolkenberg, P.: Ariel Atmospheric Remote-Sensing Infrared Exoplanet Large-Survey. (2017), Assessment Study Report, ESA

  262. Mojzsis, S.J., Arrhenius, G., McKeegan, K.D., Harrison, T.M., Nutman, A.P., Friend, C.R.L.: Evidence for life on earth before 3,800 million years ago. Nature. 384, 55–59 (1996). https://doi.org/10.1038/384055a0

    Article  ADS  Google Scholar 

  263. Tashiro, T., Ishida, A., Hori, M., Igisu, M., Koike, M., Mejean, P., Takahata, N., Sano, Y., Komiya, T.: Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada. Nature. 549, 516+ (2017). https://doi.org/10.1038/nature24019

  264. Bell, E.A., Boehnke, P., Harrison, T.M., Mao, W.L.: Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc. Natl. Acad. Sci. U. S. A. 112, 14518–14521 (2015). https://doi.org/10.1073/pnas.1517557112

    Article  ADS  Google Scholar 

  265. Dodd, M.S., Papineau, D., Grenne, T., Slack, J.F., Rittner, M., Pirajno, F., O’Neil, J., Little, C.T.S.: Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature. 543, 60–64 (2017). https://doi.org/10.1038/nature21377

    Article  ADS  Google Scholar 

  266. Jones, H.: Searching for alien life having unearthly biochemistry. Engineering. (2003). https://doi.org/10.1088/1742-6596/234/2/022022

  267. Kaltenegger, L., Selsis, F., Fridlund, M., Lammer, H., Beichman, C., Danchi, W., Eiroa, C., Henning, T., Herbst, T., Leger, A., Liseau, R., Lunine, J., Paresce, F., Penny, A., Quirrenbach, A., Rottgering, H., Schneider, J., Stam, D., Tinetti, G., White, G.J.: Deciphering spectral fingerprints of habitable exoplanets. Astrobiology. 10, 89–102 (2010). https://doi.org/10.1089/ast.2009.0381

    Article  ADS  Google Scholar 

  268. Kaltenegger, L., Traub, W.A., Jucks, K.W.: Spectral evolution of an earth-like planet. Astrophys. J. 658, 598–616 (2007). https://doi.org/10.1086/510996

    Article  ADS  Google Scholar 

  269. Lammer, H., Leitzinger, M., Scherf, M., Odert, P., Burger, C., Kubyshkina, D., Johnstone, C., Maindl, T., Schäfer, C.M., Güdel, M., Tosi, N., Nikolaou, A., Marcq, E., Erkaev, N.V., Noack, L., Kislyakova, K.G., Fossati, L., Pilat-Lohinger, E., Ragossnig, F., Dorfi, E.A.: Constraining the early evolution of Venus and earth through atmospheric Ar, Ne isotope and bulk K/U ratios. Icarus. 339, 113551 (2020). https://doi.org/10.1016/j.icarus.2019.113551

    Article  Google Scholar 

  270. Cataldi, G., Brandeker, A., Thébault, P., Singer, K., Ahmed, E., De Vries, B.L., Neubeck, A., Olofsson, G.: Searching for biosignatures in exoplanetary impact ejecta. Astrobiology. 17, 721–746 (2017). https://doi.org/10.1089/ast.2015.1437

  271. Morlok, A., Mason, A.B., Anand, M., Lisse, C.M., Bullock, E.S., Grady, M.M.: Dust from collisions: a way to probe the composition of exo-planets? Icarus. 239, 1–14 (2014). https://doi.org/10.1016/j.icarus.2014.05.024

    Article  ADS  Google Scholar 

  272. Bochinski, J.J., Haswell, C.A., Marsh, T.R., Dhillon, V.S., Littlefair, S.P.: Direct evidence for an evolving dust cloud from the exoplanet KIC 12557548 b. Astrophys. J. Lett. 800, L21 (2015). https://doi.org/10.1088/2041-8205/800/2/L21

    Article  ADS  Google Scholar 

  273. Mohon, L.: About Lunar Impact Monitoring, https://www.nasa.gov/centers/marshall/news/lunar/overview.html

  274. Brown, D., Webster, G., Zubritsky, E.A., Jones, N.N.: Mars spacecraft reveal comet flyby effects on Martian atmosphere, (2014), URL: https://www.nasa.gov/press/2014/november/mars-spacecraft-reveal-comet-flyby-effects-on-martian-atmosphere/

  275. Levy, D.H.: The collision of comet shoemaker-Levy 9 with Jupiter. Space Sci. Rev. 85, 523–545 (1998). https://doi.org/10.1023/A:1005079807445

    Article  ADS  Google Scholar 

  276. Zahnle, K., Low, M.M.: Mac: the collision of Jupiter and comet shoemaker-Levy 9. Icarus. 108, 1–17 (1994). https://doi.org/10.1006/icar.1994.1038

    Article  ADS  Google Scholar 

  277. Hammel, H.B., Beebe, R.F., Ingersoll, A.P., Orton, G.S., Mills, J.R., Simon, A.A., Chodas, P., Clarke, J.T., De Jong, E., Dowling, T.E., Harrington, J., Huber, L.F., Karkoschka, E., Santori, C.M., Toigo, A., Yeomans, D., West, R.A.: HST imaging of atmospheric phenomena created by the impact of comet Shoemaker-Levy 9. Science. (80), 267, 1288–1296 (1995). https://doi.org/10.1126/science.7871425

  278. Hammel, H.B., Wong, M.H., Clarke, J.T., Pater, I., de Fletcher, L.N., Hueso, R., Noll, K., Orton, G.S., Pérez-Hoyos, S., Sánchez-Lavega, A., Simon-Miller, A.A., Yanamandra-Fisher, P.A.: Jupiter after the 2009 impact: Hubble Space Telescope imaging of the impact-generated debris and its temporal evolution. Astrophys. J. Lett. 715, L150 (2010). https://doi.org/10.1088/2041-8205/715/2/L150

    Article  ADS  Google Scholar 

  279. Paine, M.: Can we detect asteroid impacts with rocky extrasolar planets?, 2006, URL: https://www.thespacereview.com/article/761/1

  280. Flagg, L., Weinberger, A.J., Matthews, K.: Detectability of planetesimal impacts on giant exoplanets. Icarus. 264, 1–8 (2016). https://doi.org/10.1016/j.icarus.2015.08.024

    Article  ADS  Google Scholar 

  281. Quintana, E.V., Barclay, T., Borucki, W.J., Rowe, J.F., Chambers, J.E.: The frequency of giant impacts on Earth-like worlds. Astrophys. J. 821, 126 (2016). https://doi.org/10.3847/0004-637X/821/2/126

    Article  ADS  Google Scholar 

  282. Edwards, B., Rice, M., Zingales, T., Tessenyi, M., Waldmann, I., Tinetti, G., Pascale, E., Savini, G., Sarkar, S.: Exoplanet spectroscopy and photometry with the twinkle space telescope. Exp. Astron. 47, 29–63 (2019). https://doi.org/10.1007/s10686-018-9611-4

    Article  ADS  Google Scholar 

  283. Bolton, J.R., Strickler, S.J., Connolly, J.S.: Limiting and realizable efficiencies of solar photolysis of water. Nature. 316, 495–500 (1985)

    Article  ADS  Google Scholar 

  284. Chapman, S.: A theory of upper-atmospheric ozone. In: Memoirs of the Royal Meteorological Society. pp. 103–125. R. Clark, Ltd., Edinburgh (1929)

  285. Hockstad, L.: Inventory of U.S. greenhouse gas emission and sinks., 1200 Pennsylvania Ave, N.W., Washington, DC 20460, U.S.A (2011), EPA, EPA 430-R-16-002

  286. Olaya-Abril, A., Hidalgo-Carrillo, J., Luque-Almagro, V.M., Fuentes-Almagro, C., Urbano, F.J., Moreno-Vivián, C., Richardson, D.J., Roldán, M.D.: Exploring the denitrification proteome of Paracoccus denitrificans PD1222. Front. Microbiol. 9, 1137 (2018). https://doi.org/10.3389/fmicb.2018.01137

    Article  Google Scholar 

  287. Jamieson, C.S., Bennett, C.J., Mebel, A.M., Kaiser, R.I.: Investigating the mechanism for the formation of nitrous oxide [N2O(X1AE+)] in extraterrestrial ices. Astrophys. J. 624, 436–447 (2005). https://doi.org/10.1086/428933

    Article  ADS  Google Scholar 

  288. Ravishankara, A.R., Daniel, J.S., Portmann, R.W.: Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Sci. 326(80), 123–125 (2009). https://doi.org/10.1126/science.1176985

  289. Leigh, G.J. ed: Nitrogen fixation at the millennium. Elsevier science B.V. (2002), ISBN: 9780444509659

  290. Mtaita, T.A.: Food. In: Hazeltine, B. and Bull, C. (eds.) Field Guide to Appropriate Technology. pp. 277–480. Elsevier Inc. (2003)

  291. Betz, A.L.: Ammonia in the Giant planets. In: Amazing Light. pp. 73–78. Springer New York (1996)

  292. Oze, C., Sharma, M.: Have olivine, will gas: serpentinization and the abiogenic production of methane on Mars. Geophys. Res. Lett. 32, L10203 (2005). https://doi.org/10.1029/2005GL022691

    Article  ADS  Google Scholar 

  293. Weinstock, B., Niki, H.: Carbon monoxide balance in nature. Sci. 176(80), 290–292 (1972). https://doi.org/10.1126/science.176.4032.290

    Article  ADS  Google Scholar 

  294. Pilcher, C.B.: Biosignatures of Early Earths. Astrobiology. 3, 471–486 (2003). https://doi.org/10.1089/153110703322610582

    Article  ADS  Google Scholar 

  295. Kolusu, S.R., Schlünzen, K.H., Grawe, D., Seifert, R.: Determination of chloromethane and dichloromethane in a tropical terrestrial mangrove forest in Brazil by measurements and modelling. Atmos. Environ. 173, 185–197 (2018). https://doi.org/10.1016/j.atmosenv.2017.10.057

    Article  ADS  Google Scholar 

  296. Roels, J., Verstraete, W.: Biological formation of volatile phosphorus compounds. Bioresour. Technol. 79, 243–250 (2001). https://doi.org/10.1016/S0960-8524(01)00032-3

    Article  Google Scholar 

  297. Gassmann, G., Van Beusekom, J.E.E., Glindemann, D.: Offshore atmospheric phosphine. Naturwissenschaften. 83, 129–131 (1996). https://doi.org/10.1007/BF01142178

  298. Schwieterman, E.W., Kiang, N.Y., Parenteau, M.N., Harman, C.E., DasSarma, S., Fisher, T.M., Arney, G.N., Hartnett, H.E., Reinhard, C.T., Olson, S.L., Meadows, V.S., Cockell, C.S., Walker, S.I., Grenfell, J.L., Hegde, S., Rugheimer, S., Hu, R., Lyons, T.W.: Exoplanet Biosignatures: A Review of Remotely Detectable Signs of Life. (2017). https://doi.org/10.1089/ast.2017.1729

  299. Rein, H., Fujii, Y., Spiegel, D.S.: Some inconvenient truths about biosignatures involving two chemical species on earth-like exoplanets. Proc. Natl. Acad. Sci. U. S. A. 111, 6871–6875 (2014). https://doi.org/10.1073/pnas.1401816111

    Article  ADS  Google Scholar 

  300. PHL @ UPR Arecibo: Habitable Exoplanets Catalog, Conservative Sample of Potentially Habitable Exoplanets, URL: http://phl.upr.edu/projects/habitable-exoplanets-catalog. Accessed: 02.11.2020

  301. Zechmeister, M., Dreizler, S., Ribas, I., Reiners, A., Caballero, J.A., Bauer, F.F., Béjar, V.J.S., González-Cuesta, L., Herrero, E., Lalitha, S.: The CARMENES search for exoplanets around M dwarfs-two temperate earth-mass planet candidates around Teegarden’s star. Astron. Astrophys. 627, A49 (2019)

    Article  Google Scholar 

  302. Gillon, M., et al.: Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature. 7642, 456–460 (2017)

    Article  ADS  Google Scholar 

  303. Costa, E., Méndez, R.A., Jao, W.-C., Henry, T.J., Subasavage, J.P., Ianna, P.A.: The solar neighborhood. XVI. Parallaxes from CTIOPI: final results from the 1.5 m telescope program. Astron. J. 132, 1234 (2006)

  304. Burgasser, A.J., Mamajek, E.E.: On the age of the TRAPPIST-1 system. Astrophys. J. 845, 110 (2017)

    Article  ADS  Google Scholar 

  305. exoplanet.eu: Planet GJ 1061 d, http://exoplanet.eu/catalog/gj_1061_b/

  306. Anglada-Escudé, G., Tuomi, M., Gerlach, E., Barnes, R., Heller, R., Jenkins, J.S., Wende, S., Vogt, S.S., Butler, R.P., Reiners, A.: A dynamically-packed planetary system around GJ 667C with three super-earths in its habitable zone. Astron. Astrophys. 556, A126 (2013)

    Article  ADS  Google Scholar 

  307. Torres, G., Kipping, D.M., Fressin, F., Caldwell, D.A., Twicken, J.D., Ballard, S., Batalha, N.M., Bryson, S.T., Ciardi, D.R., Henze, C.E.: Validation of 12 small Kepler transiting planets in the habitable zone. Astrophys. J. 800, 99 (2015)

    Article  ADS  Google Scholar 

  308. Astudillo-Defru, N., Forveille, T., Bonfils, X., Ségransan, D., Bouchy, F., Delfosse, X., Lovis, C., Mayor, M., Murgas, F., Pepe, F.: The HARPS search for southern extra-solar planets-XLI. A dozen planets around the M dwarfs GJ 3138, GJ 3323, GJ 273, GJ 628, and GJ 3293. Astron. Astrophys. 602, A88 (2017)

  309. Feng, F., Tuomi, M., Jones, H.R.A., Barnes, J., Anglada-Escudé, G., Vogt, S.S., Butler, R.P.: Color difference makes a difference: four planet candidates around τ Ceti. Astron. J. 154, 135 (2017)

    Article  ADS  Google Scholar 

  310. Wright, C.O., Egan, M.P., Kraemer, K.E., Price, S.D.: The Tycho-2 spectral type catalog. Astron. J. 125, 359 (2003)

    Article  ADS  Google Scholar 

  311. Mamajek, E.E., Hillenbrand, L.A.: Improved age estimation for solar-type dwarfs using activity-rotation diagnostics. Astrophys. J. 687, 1264 (2008)

    Article  ADS  Google Scholar 

  312. Brown, A.G.A., Vallenari, A., Prusti, T., De Bruijne, J.H.J., Babusiaux, C., Bailer-Jones, C.A.L., Biermann, M., Evans, D.W., Eyer, L., Jansen, F.: Gaia data release 2-summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018)

  313. Anglada-Escudé, G., Amado, P.J., Barnes, J., Berdiñas, Z.M., Butler, R.P., Coleman, G.A.L., de La Cueva, I., Dreizler, S., Endl, M., Giesers, B.: A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature. 536, 437–440 (2016)

    Article  ADS  Google Scholar 

  314. Karvella, P., Thevenin, F.: A Family Portrait of the Alpha Centauri System

  315. Borucki, W.J., Agol, E., Fressin, F., Kaltenegger, L., Rowe, J., Isaacson, H., Fischer, D., Batalha, N., Lissauer, J.J., Marcy, G.W.: Kepler-62: a five-planet system with planets of 1.4 and 1.6 Earth radii in the habitable zone. Sci. 340(80), 587–590 (2013)

    Article  ADS  Google Scholar 

  316. Borucki, W., Thompson, S.E., Agol, E., Hedges, C.: Kepler-62f: Kepler’s first small planet in the habitable zone, but is it real? New Astron. Rev. 83, 28–36 (2018)

    Article  ADS  Google Scholar 

  317. Morton, T.D., Bryson, S.T., Coughlin, J.L., Rowe, J.F., Ravichandran, G., Petigura, E.A., Haas, M.R., Batalha, N.M.: False positive probabilities for all Kepler objects of interest: 1284 newly validated planets and 428 likely false positives. Astrophys. J. 822, 86 (2016)

    Article  ADS  Google Scholar 

  318. University of Puerto Rico: Kepler 442 b (K-Warm Terran)

  319. Torres, G., Kane, S.R., Rowe, J.F., Batalha, N.M., Henze, C.E., Ciardi, D.R., Barclay, T., Borucki, W.J., Buchhave, L.A., Crepp, J.R.: Validation of small Kepler transiting planet candidates in or near the habitable zone. Astron. J. 154, 264 (2017)

    Article  ADS  Google Scholar 

  320. Berger, T.A., Huber, D., Gaidos, E., van Saders, J.L.: Revised radii of Kepler stars and planets using Gaia data release 2. Astrophys. J. 866, 99 (2018)

  321. University of Puerto Rico: Kepler 1229 b (M-Warm Terran)

  322. Martinez, A.O., Crossfield, I.J.M., Schlieder, J.E., Dressing, C.D., Obermeier, C., Livingston, J., Ciceri, S., Peacock, S., Beichman, C.A., Lépine, S.: Stellar and planetary parameters for K2’s late-type Dwarf systems from C1 to C5. Astrophys. J. 837, 72 (2017)

    Article  ADS  Google Scholar 

  323. Crossfield, I.J.M., Ciardi, D.R., Petigura, E.A., Sinukoff, E., Schlieder, J.E., Howard, A.W., Beichman, C.A., Isaacson, H., Dressing, C.D., Christiansen, J.L.: 197 candidates and 104 validated planets in K2’s first five fields. Astrophys. J. Suppl. Ser. 226, 7 (2016)

    Article  ADS  Google Scholar 

  324. University of Kyoto: Extrasolar Planets Catalogue- Kepler-1410, URL: http://www.exoplanetkyoto.org/exohtml/Kepler-1410_b.html, Accessed: 2.11.2020

  325. University of Kyoto: Extrasolar Planets Catalogue - Kepler 1512, URL: http://www.exoplanetkyoto.org/exohtml/Kepler-1512_b.html, Accessed: 2.11.2020

  326. University of Kyoto: Extrasolar Planets Catalogue - Kepler 560, URL: http://www.exoplanetkyoto.org/exohtml/Kepler-560_b.html, Accessed: 2.11.2020

  327. Rodriguez, J.E., Vanderburg, A., Zieba, S., Kreidberg, L., Morley, C. V., Eastman, J.D., Kane, S.R., Spencer, A., Quinn, S.N., Cloutier, R., Huang, C.X., Collins, K.A., Mann, A.W., Gilbert, E., Schlieder, J.E., Quintana, E. V., Barclay, T., Suissa, G., Kopparapu, R.K., Dressing, C.D., Ricker, G.R., Vanderspek, R.K., Latham, D.W., Seager, S., Winn, J.N., Jenkins, J.M., Berta-Thompson, Z., Boyd, P.T., Charbonneau, D., Caldwell, D.A., Chiang, E., Christiansen, J.L., Ciardi, D.R., Colón, K.D., Doty, J., Gan, T., Guerrero, N., Günther, M.N., Lee, E.J., Levine, A.M., Lopez, E., Muirhead, P.S., Newton, E., Rose, M.E., Twicken, J.D., Villaseñor, J.N.: The First Habitable Zone Earth-Sized Planet from TESS II: Spitzer Confirms TOI-700 d., Astron. J., 160, 117 (2020)

  328. Barclay, T., Quintana, E.V., Adams, F.C., Ciardi, D.R., Huber, D., Foreman-mackey, D., Montet, B.T., Caldwell, D.: The five planets in the kepler-296 binary system all orbit the primary: a statistical and analytical analysis. Astrophys. J. 809, 7 (2015). https://doi.org/10.1088/0004-637X/809/1/7

    Article  ADS  Google Scholar 

  329. Cartier, K.M.S., Gilliland, R.L., Wright, J.T., Ciardi, D.R.: Revision of earth-sized kepler planet candidate properties with high-resolution imaging by the hubble space telescope ☆. Astrophys. J. 804, 1–16 (2015). https://doi.org/10.1088/0004-637X/804/2/97

    Article  Google Scholar 

  330. Muirhead, P.S., Hamren, K., Schlawin, E., Covey, K.R., Lloyd, J.P.: Characterizing the cool kepler objects of interests. New effective temperatures, metallicities, masses, and radii of low-mass kepler planet-candidate host stars., ApJL, 750 L37, (2012)

  331. University of Kyoto: Extrasolar Planets Catalogue - Kepler 438, URL: http://www.exoplanetkyoto.org/exohtml/Kepler-438_b.html, Accessed: 2.11.2020

  332. Williams, D.R.: Sun Fact Sheet, URL: https://nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html, Accessed: 2.11.2020

  333. Brucato, J.R., Baratta, G.A., Strazzulla, G.: An infrared study of pure and ion irradiated frozen formamide. Astron. Astrophys. 455, 395–399 (2006). https://doi.org/10.1051/0004-6361:20065095

    Article  ADS  Google Scholar 

  334. Khare, B.N., Sagan, C., Thomson, W.R., Arakawa, E.T., Meisse, C., Tuminello, P.S.: Optical properties of poly-HCN and their astronomical applications. Rev. Can. Chim. 72, 678–694 (1994). https://doi.org/10.1139/v94-093

    Article  ADS  Google Scholar 

  335. Hazen, R.M., Sverjensky, D.A.: Mineral surfaces, geochemical complexities, and the origins of life. Cold Spring Harb. Perspect. Biol. 2, (2010). https://doi.org/10.1101/cshperspect.a002162

  336. Rode, B.M.: Peptide and the origin of life. Peptides. 20, 773–786 (1999). https://doi.org/10.1016/S0196-9781(99)00062-5

    Article  Google Scholar 

  337. Cleaves, H.J., Chalmers, J.H., Lazcano, A., Miller, S.L., Bada, J.L.: Chemical Evolution across Space & Time. American Chemical Society, Washington, DC (2008)

    Google Scholar 

  338. Wang, Y., Tennyson, J., Yurchenko, S.N.: Empirical Line Lists in the ExoMol Database. Atoms, 8(1), 7 (2020)

Download references

Acknowledgements

Martin Ferus acknowledges grant no. 19-03314S of the Czech Science Foundation. Laboratory of high resolution spectroscopy acknowledges ERDF/ESF “Centre of Advanced Applied Sciences” (No. CZ.02.1.01/0.0/0.0/16_019/0000778). Antonín Knížek acknowledges support from grant GAUK 16742. A. Kereszturi acknowledges the support of GINOP-2.3.2-15-2016-00003 from NKFIH. V. Čuba and B. Drtinová acknowledge support from MPO TRIO no. FV30139. Lukáš Nejdl acknowledges the support of Grant Agency of Mendel University in Brno IGA MENDELU 2019_TP_009. Vladislav Chernov and Petr Kubelík acknowledge support from the joint RFBR projects (research projects no 20-10591 J and no. 19-52-26006, correspondingly). Special thanks go to Antonín Knížek for comprehensive consolidation of the paper and to Alan Heays for his careful language review of the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Ferus.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferus, M., Adam, V., Cassone, G. et al. Ariel – a window to the origin of life on early earth?. Exp Astron 53, 679–728 (2022). https://doi.org/10.1007/s10686-020-09681-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-020-09681-w

Keywords

Navigation