Skip to main content
Log in

Optimization of EDTA–Ammonia Ratio for Chemically Deposited Layers of ZnO Nanoparticles

  • SURFACE AND THIN FILMS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Layers of zinc oxide (ZnO) on glass substrates were grown by chemical bath deposition method. This method refers to solvo-thermal methods of crystal growth. When either ethylene-diamine-tetraacetic acid (EDTA) or ammonia was used as a complex agent, very weak adhesion of ZnO nanoparticles to the surface of glass substrates was noted, and when washing, the samples on the surfaces were removed by a water flow under pressure. When EDTA and ammonia were used together, the adhesion of ZnO nanoparticles to glass substrates increased dramatically. According to X-ray diffraction data, all sediments belong to the hexagonal syngony and correspond to the wurtzite-type ZnO structure. Optical absorption measurements showed that the band gap varied from 3.58 to 3.97 eV. The density of beams from ZnO nanowires on the substrate surface varied depending on the ratio between EDTA and ammonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. M. Ali, J. Basrah Res. (Sciences) 37, 49 (2011).

    Google Scholar 

  2. P. B. Taunk, R. Das, D. P. Bisen, et al., Karbala Int. J. Modern Sci. 1, 159 (2015).

    Article  Google Scholar 

  3. S. Temel, F. O. Gokmen, and E. Yaman, Eur. Sci. J., 13, 28 (2017).

    Google Scholar 

  4. F. Özütok and S. Demiri, Digest J. Nanomater. Biostruct. 12, 309 (2017).

    Google Scholar 

  5. H. Khallaf, G. Chai, O. Lupan, et al., J. Phys. D 42, 135304 (2009).

    Article  ADS  Google Scholar 

  6. Y. G. Taofeek and E. H. Olusegun, Int. J. Sci. Technol. Res. 1, 24 (2012).

    Google Scholar 

  7. R. R. Krishnan, G. Sanjeev, R. Prabhu, and V. P. M. Pillai, JOM 70, 739 (2018).

    Article  Google Scholar 

  8. O. Reyes, D. Maldonado, J. Escorcia-García, and P. J. Sebastian, J. Mater. Sci.: Mater. Electron. 29, 15535 (2018).

    Google Scholar 

  9. A. K. Yildirim, Materiali in Tehnologije 52, 667 (2018).

    Article  Google Scholar 

  10. A. S. Ibraheam, Y. Al-Douri, J. M. S. Al-Fhdawi, et al., Microsyst. Technol. 22, 2893 (2016).

    Article  Google Scholar 

  11. A. K. Yıldırım, Int. J. Eng. Res. Online 6, 5 (2018).

    Google Scholar 

  12. R. Bhowmik, M. N. Murty, and E. S. Srinadhu, PMC Phys. B 1, 20 (2008).

  13. A. N. Fouda, M. Marzook, H. M. Abd El-Khalek, et al., Silicon 9, 809 (2017).

    Article  Google Scholar 

  14. S. I. Drapak, S. V. Gavrylyuk, Z. D. Kovalyuk, and O. S. Lytvyn, Inorg. Mater. 47, 847 (2011).

    Article  Google Scholar 

  15. L. N. Obolenskaya, M. A. Zaporozhets, G. M. Kuzmicheva, et al., Crystallogr. Rep. 60, 406 (2015).

    Article  ADS  Google Scholar 

  16. B. Thomas, S. Deepa, and K. Prasanna Kumari, Ionics 25, 2 (2018).

    Google Scholar 

  17. K. L. P. Thi, L. T. Nguyen, N. H. Ke, et al., J. Electron. Mater. 47, 6302 (2018).

    Article  ADS  Google Scholar 

  18. Z. Yuan, J. Electron. Mater. 44, 1187 (2015).

    Article  ADS  Google Scholar 

  19. Z. R. Khan, M. S. Khan, M. Zulfequar, and M. Shahid Khan, Mater. Sci. Appl. 2, 340 (2011).

    Google Scholar 

  20. H. Kumar and R. Rani, Int. Lett. Chem., Phys. Astron. 14, 26 (2013).

    ADS  Google Scholar 

  21. M. R. Bodke, Y. Purushotham, and B. N. Dole, Cerâmica 64, 91 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Önal or B. Altıokka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Önal, M., Altıokka, B. Optimization of EDTA–Ammonia Ratio for Chemically Deposited Layers of ZnO Nanoparticles. Crystallogr. Rep. 65, 1237–1241 (2020). https://doi.org/10.1134/S1063774520070135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774520070135

Navigation