Skip to main content
Log in

Gold Nanorods with Organosilica Shells as a Platform for Creating Multifunctional Nanostructures

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The perspectives of using γ-mercaptopropyltrimethoxysilane as a precursor for creating multifunctional composite nanoparticles (CNPs) with a rodlike gold core and an organosilica shell have been analyzed. It is shown that the presence of thiol groups, which are capable of specific interactions with metal ions and atoms, in the shell makes it possible to “directly” (i.e., without any additional modification) load rather large amounts of an anticancer drug, cisplatin, into it. In addition, preliminary data have been obtained that indicate the possibility of nitrosation of the SH-groups of the shells, which is very important from the viewpoint of creating container CNPs for NO, with such containers providing not only its delivery to tumors, but also its controlled release under the action of laser radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. Note that the sorption values calculated form the absorption spectroscopy data are substantially larger. Apparently, this is due to the presence of some amount of SH-SiO1.5 particles, which have been formed in the course of the shell synthesis and can also sorb cisplatin, in the dispersion.

REFERENCES

  1. Klimov, V.V., Nanoplazmonika (Nanoplasmonics), Moscow: Fizmatlit, 2009.

    Google Scholar 

  2. Hanske, C., Sanz-Ortiz, M.N., and Liz-Marzan, L.M., Adv. Mater. (Weinheim, Fed. Repub. Ger.), 2018, vol. 30, p. 1 707 003.

  3. Wang, Z., Meng, X., Kildishev, A.V., Boltasseva, A., and Shalaev, V.M., Laser Photonics Rev., 2017, vol. 11, p. 1 700 212.

    Article  Google Scholar 

  4. Roldughin, V.I., Usp. Khim., 2000, vol. 69, p. 899.

    Article  Google Scholar 

  5. Rumyantseva, T.B., Dement’eva, O.V., Protsenko, I.E., Zaitseva, A.V., Sukhov, V.M., and Rudoy, V.M., Colloid J., 2019, vol. 81, p. 733.

    Article  Google Scholar 

  6. Webb, J.A. and Bardhan, R., Nanoscale, 2014, vol. 6, p. 2502.

    Article  CAS  Google Scholar 

  7. Alekseeva, A.V., Bogatyrev, V.A., Khlebtsov, B.N., Mel’nikov, A.G., Dykman, L.A., and Khlebtsov, N.G., Colloid J., 2006, vol. 68, p. 661.

    Article  CAS  Google Scholar 

  8. Obare, S.O., Jana, N.R., and Murphy, C.J., Nano Lett., 2001, vol. 1, p. 601.

    Article  CAS  Google Scholar 

  9. Murphy, C.J., Sau, T.K., Gole, A.M., Orendorff, C.J., Gao, J., Gou, L., Hunyadi, S.E., and Li, T., J. Phys. Chem. B, 2005, vol. 109, p. 13 857.

    Article  Google Scholar 

  10. Yoon, S., Lee, B., Kim, C., and Lee, J.H., Cryst. Growth Des., 2018, vol. 18, p. 4731.

    Article  CAS  Google Scholar 

  11. Khlebtsov, N. and Dykman, L., Chem. Soc. Rev., 2011, vol. 40, p. 1647.

    Article  CAS  Google Scholar 

  12. Koval’, I.V., Zh. Org. Khim., 2007, vol. 43, p. 327.

    Google Scholar 

  13. Varache, M., Bezverkhyy, I., Weber, G., Saviot, L., Chassagnon, R., Baras, F., and Bouyer, F., Langmuir, 2019, vol. 35, p. 8984.

    Article  CAS  Google Scholar 

  14. Shaffer, T.M., Harmsen, S., Khwaja, E., Kircher, M.F., Drain, C.M., and Grimm, J., Nano Lett., 2016, vol. 16, p. 5601.

    Article  CAS  Google Scholar 

  15. Irmukhametova, G.S., Mun, G.A., and Khutoryanskiy, V.V., Langmuir, 2011, vol. 27, p. 9551.

    Article  CAS  Google Scholar 

  16. Riccio, D.A., Nugent, J.L., and Schoenfisch, M.H., Chem. Mater., 2011, vol. 23, p. 1727.

    Article  CAS  Google Scholar 

  17. Malone-Povolny, M.J. and Schoenfisch, M.H., ACS Appl. Mater. Interfaces, 2019, vol. 11, p. 12 216.

    Article  Google Scholar 

  18. Salavatov, N.A., Dement’eva, O.V., Mikhailichenko, A.I., and Rudoy, V.M., Colloid J., 2018, vol. 80, p. 541.

    Article  CAS  Google Scholar 

  19. Lo, C.-H. and Hu, T.-M., Soft Matter, 2017, vol. 13, p. 5950.

    Article  CAS  Google Scholar 

  20. Torres, M., Khan, S., Duplanty, M., Lozano, H.C., Morris, T.J., Nguyen, T., Rostovtsev, Y.V., De Yonker, N.J., and Mirsaleh-Kohan, N., J. Phys. Chem. A, 2018, vol. 122, p. 6934.

    Article  CAS  Google Scholar 

  21. Bellamy, L., The Infrared Spectra of Complex Molecules, London: Methuen, 1957.

    Google Scholar 

  22. Liu, P., Wang, Y., Liu, Y., Tan, F., Li, J., and Li, N., Theranostics, 2020, vol. 10, p. 6774.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are very grateful to P.R. Kazanskii (Center for Collective Use “Microanalysis,” Moscow) for the electron microscopic and elemental analysis of CNPs, and A.V. Zaitseva (Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences) for the AFM examination of CNPs.

Funding

The work was performed within the framework of the order of the Ministry of Science and Higher Education of the Russian Federation and was supported by the Russian Foundation for Basic Reseach (project no. 20-33-90266).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Dement’eva.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salavatov, N.A., Dement’eva, O.V. & Rudoy, V.M. Gold Nanorods with Organosilica Shells as a Platform for Creating Multifunctional Nanostructures. Colloid J 82, 713–718 (2020). https://doi.org/10.1134/S1061933X20060125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X20060125

Navigation