Skip to main content
Log in

Quantum Trajectory Description of the Time-Independent (Inverse) Fermi Accelerator

  • Atomic Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

We re-examine the (inverse) Fermi accelerator problem by resorting to a quantum trajectory description of the dynamics. Quantum trajectories are generated from the time-independent Schrödinger equation solutions, using a unipolar treatment for the (light) confined particle and a bipolar treatment for the (heavy) movable wall. Analytic results are presented for the exact coupled two-dimensional problem, as well as for the adiabatic and mixed quantum-classical approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Strictly speaking, in Ulam’s model, the second wall is oscillating periodically. However, we shall restrict our consideration to the simpler model for which the moving wall interacts only with the particle.

  2. In previous work by author Hussein, this was referred to as the “semiclassical” or “semiquantal” approach, but we wish to avoid confusion with the altogether different WKB approximation. In any event, such approximations are typically referred to as “mixed quantum-classical” in the physical chemistry literature.

  3. Again, in the physical chemistry literature, “Born-Oppenheimer approximation” often refers to a quantum treatment of the electrons, parametrized by definite nuclear geometries which may or may not be moving in time. It is also used in the sense of the previous work by author Hussein, to mean a weakly separable approximation in which both light and heavy particles are treated quantum mechanically. In this paper, the latter is referred to as the “adiabatic approximation.”

  4. The moving wall idea also emerges in a time-dependent quantum treatment, although that remains beyond the scope of the present submission.

References

  1. E. Fermi, Phys. Rev. 75, 1169 (1949)

    Article  ADS  Google Scholar 

  2. S. Ulam, in . Proc. 4th Berkeley Symposium on Mathematics and Probability 3, 315. Berkeley, Los Angeles, (1961)

  3. V. Gelfreich, V. Rom-Kedar, D. Turaev, Chaos. 22, 033116 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  4. M.S. Hussein, V. Kharchenko, Ann. Phys. 250, 352 (1996)

    Article  ADS  Google Scholar 

  5. M.S. Hussein, M.P. Pato, V. Kharchenko, Braz. J. Phys., 27 (1997)

  6. J.-B. Shim, M.S. Hussein, M. Hentschel, Phys. Lett. A. 373, 3536 (2009)

    Article  ADS  Google Scholar 

  7. K. Alder, A. Winther, Phys. Rev. 91, 1578 (1953)

    Article  ADS  Google Scholar 

  8. H.D. Marta, L.F. Canto, R. Donangelo, Phys. Rev. C. 78, 034612 (2008)

    Article  ADS  Google Scholar 

  9. L.F. Canto, M.S. Hussein. Scattering Theory of Molecules, Atoms and Nuclei (World Scientific, Singapore, 2013)

    Book  Google Scholar 

  10. B.V. Carlson, M.S. Hussein, A.F.R. de Toledo Piza, L.F. Canto, Phys. Rev. C. 60, 014604 (1999)

    Article  ADS  Google Scholar 

  11. B.V. Carlson, R. Capote, ajd M. Sin, Few-Body Systems. 57, 307 (2016)

    Article  ADS  Google Scholar 

  12. M. Kleber, Phys. Rep. 236, 331 (1994)

    Article  ADS  Google Scholar 

  13. D. Bohm, Phys. Rev. 85, 166 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  14. P. R. Holland. The Quantum Theory of Motion (Cambridge University Press, Cambridge, 1993)

    Book  Google Scholar 

  15. R. E. Wyatt. Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics (Springer, New York, 2005)

    MATH  Google Scholar 

  16. B. Poirier, J. Chem. Phys. 121, 4501–4515 (2004)

    Article  ADS  Google Scholar 

  17. C. Trahan, B. Poirier, J. Chem. Phys. 124, 034115 (2006)

    Article  ADS  Google Scholar 

  18. C. Trahan, B. Poirier, J. Chem. Phys. 124, 034116 (2006)

    Article  ADS  Google Scholar 

  19. B. Poirier, G. Parlant, J. Phys. Chem. A. 111, 10400–10408 (2007)

    Article  Google Scholar 

  20. B. Poirier, J. Chem. Phys. 128, 164115 (2008)

    Article  ADS  Google Scholar 

  21. B. Poirier, J. Chem. Phys. 129, 084103 (2008)

    Article  ADS  Google Scholar 

  22. D. Babyuk, R.E. Wyatt, J. Chem. Phys. 124, 214109 (2006)

    Article  ADS  Google Scholar 

  23. B. Poirier, Chem. Phys. 370, 4 (2010)

    Article  Google Scholar 

  24. J. Schiff, B. Poirier, J. Chem. Phys. 136, 031102 (2012)

    Article  ADS  Google Scholar 

  25. G. Parlant, Y.-C. Ou, K. Park, B. Poirier, Comput Theoret. Chem. 3-17, 990 (2012)

    Google Scholar 

  26. B. Poirier, Rev, Phys. X. 4, 040002 (2014)

    Google Scholar 

  27. H.-M. Tsai, B. Poirier, J. Phys. 701, 012013 (2016)

    Google Scholar 

  28. Y. Scribano, G. Parlant, B. Poirier, J. Chem. Phys. 149, 021101 (2018)

    Article  ADS  Google Scholar 

  29. A. Bouda, Int. J. Mod. Phys. 18, 3347 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  30. P. Holland, Ann. Phys. (NY). 315, 505 (2005)

    Article  ADS  Google Scholar 

  31. P. Holland, Proc. R. Soc. London, Ser. A. 461, 3659 (2005)

    ADS  Google Scholar 

  32. M.F. González, X. Giménez, J. González, J.M. Bofill, J. Math. Chem. 43, 350 (2008)

    Article  MathSciNet  Google Scholar 

  33. B. Poirier, Phys. Rev. A. 56, 120–130 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  34. A. Shapere, F. Wklczek. Geometric Phases in Physics (World Scientific, Singapore, 1989)

    Google Scholar 

  35. P.R. Bunker, P. Jensen. Molecular Spectroscopy and Symmetry (NRC-CNRC, Ottawa, 1998)

    Google Scholar 

  36. D.J. Tannor. Introduction to Quantum Mechanics: A Time-dependent Perspective (University Science Books, Sausalito, 2007)

    Google Scholar 

  37. M. Abramowitz, I.E. Stegun, Handbook of Mathematical Functions, p. 366, U.S Department of Commerce (1972)

  38. M.F. Kling, M.J.J. Vrakking, Annu. Rev. Phys. Chem. 59, 463 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Both authors extend their thanks to J-M. Rost for the hospitality extended to them in Dresden. BP expresses his deep sorrow for the loss of his esteemed colleague and co-author, who passed away during the initial preparation of this manuscript. Among the myriad research topics of interest to the legendary MSH, BP is honored and humbled to be able to present MSH’s Fermi accelerator contributions as part of this special issue.

Funding

This work was partly supported by The Robert A. Welch Foundation (D-1523) and by the Brazilian agencies, Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). MSH acknowledges a Senior Visiting Professorship granted by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), through the CAPES/ITA-PVS program. Primary support, however, is through a joint grant from the SPRINT FAPESP/TTU program (2016/50485-9), which both MSH and BP share. BP also acknowledges support from the MPIPKS during his six month stay at the Institute (February-August, 2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Poirier.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussein, M.S., Poirier, B. Quantum Trajectory Description of the Time-Independent (Inverse) Fermi Accelerator. Braz J Phys 51, 193–203 (2021). https://doi.org/10.1007/s13538-020-00825-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-020-00825-z

Keywords

Navigation