Skip to main content
Log in

Highly sensitive refractive index sensor optimized for blood group sensing utilizing the Fano resonance

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

A metal–insulator–metal (MIM) waveguide coupled with two unequal vertical rectangular cavities optimized for high sensitivity is proposed in this study. Due to the interaction of the continuum and the discrete state in the waveguide mode, a Fano like profile is obtained in the transmission spectra, the shift of which is utilized to identify the material under sensing. In order to guarantee the maximum device performance, an optimization technique is imposed on the structural parameters, resulting in a maximum sensitivity of 2625.87 nm/RIU and figure of merit (FOM) of 26.04. The sensor has been exploited to determine the human blood group by using the refractive index model proposed for different blood groups A, B, and O. Furthermore, this structure can also be used as a temperature sensor with the temperature sensitivity of \(-1.04 \, \hbox {nm}/^\circ \hbox {C}\). The excellent performance along with the blood sensing and temperature sensing capabilities of the device paves the way toward refractive index sensors that have not only been utilized in microchip processors but also a wide range of biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

References

  • Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830

    CAS  Google Scholar 

  • Butt MA, Khonina SN, Kazanskiy NL (2019) Plasmonic refractive index sensor based on M–I–M square ring resonator. In: 2018 international conference on computing, electronic and electrical engineering, ICE Cube 2018, January, pp 1–4

  • Danaie M, Shahzadi A (2019) Design of a high-resolution metal–insulator-metal plasmonic refractive index sensor based on a ring-shaped Si resonator. Plasmonics 14(6):1453–1465

    CAS  Google Scholar 

  • Fano U (1961) Effects of configuration interaction on intensities and phase shifts. Phys Rev 124(6):1866–1878

    CAS  Google Scholar 

  • Hassan MF, Hasan MM, Ahmed MI, Sagor RH (2020a) Numerical investigation of a plasmonic refractive index sensor based on rectangular MIM topology. In: Proceedings—2020 international seminar on intelligent technology and its application: humanification of reliable intelligent systems, ISITIA, 2020, pp 77–82

  • Hassan MF, Sagor RH, Tathfif I, Rashid KS, Radoan M (2020b) An optimized dielectric–metal–dielectric refractive index nanosensor. IEEE Sens J XX(XX):1

    Google Scholar 

  • Johnson PB, Christy RW (1972) Optical constant of the noble metals. Phys Rev B 6(12):4370–4379

    CAS  Google Scholar 

  • Jung WK, Byun KM (2011) Fabrication of nanoscale plasmonic structures and their applications to photonic devices and biosensors. Biomed Eng Lett 1(3):153–162

    Google Scholar 

  • Khani S, Danaie M, Rezaei P (2018) Realization of single-mode plasmonic bandpass filters using improved nanodisk resonators. Opt Commun 420(March):147–156

    CAS  Google Scholar 

  • Li H, Lin L, Xie S (2000) Refractive index of human whole blood with different types in the visible and near-infrared ranges. Laser Tissue Interact XI Photochem Phototherm Photomech 3914:517

    Google Scholar 

  • Lin X-S, Huang X-G (2008) Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt Lett 33(23):2874

    Google Scholar 

  • Liu Y, Zhou F, Yao B, Cao J, Mao Q (2013) High-extinction-ratio and low-insertion-loss plasmonic filter with coherent coupled nano-cavity array in a MIM waveguide. Plasmonics 8(2):1035–1041

    CAS  Google Scholar 

  • Liu Z, Wei Y, Zhang Y, Zhu Z, Zhao E, Zhang Y, Yang J, Liu C, Yuan L (2016) Reflective-distributed SPR sensor based on twin-core fiber. Opt Commun 366:107–111

    CAS  Google Scholar 

  • Lu H, Liu X, Wang L, Gong Y, Mao D (2011) Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Opt Express 19(4):2910

    CAS  Google Scholar 

  • Luk’Yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9(9):707–715

    Google Scholar 

  • Luo S, Li B, Xiong D, Zuo D, Wang X (2017) A high performance plasmonic sensor based on metal–insulator-metal waveguide coupled with a double-cavity structure. Plasmonics 12(2):223–227

    CAS  Google Scholar 

  • Mohammad D, Behnam K (2018) Design of a label-free photonic crystal refractive index sensor for biomedical applications. Photon Nanostruct Fundam Appl 31(June):89–98

    Google Scholar 

  • Nasirifar R, Danaie M, Dideban A (2019) Dual channel optical fiber refractive index sensor based on surface plasmon resonance. Optik 186(April):194–204

    CAS  Google Scholar 

  • Pang S, Huo Y, Xie Y, Hao L (2016) Fano resonance in MIM waveguide structure with oblique rectangular cavity and its application in sensor. Opt Commun 381:409–413

    CAS  Google Scholar 

  • Rahman-Zadeh F, Danaie M, Kaatuzian H (2019) Design of a highly sensitive photonic crystal refractive index sensor incorporating ring-shaped GaAs cavity. Opto Electron Rev 27(4):369–377

    Google Scholar 

  • Rahmatiyar M, Afsahi M, Danaie M (2020a) Design of a refractive index plasmonic sensor based on a ring resonator coupled to a MIM waveguide containing tapered defects. Plasmonics 15(6):2169–2176

    CAS  Google Scholar 

  • Rahmatiyar M, Danaie M, Afsahi M (2020b) Employment of cascaded coupled resonators for resolution enhancement in plasmonic refractive index sensors. Opt Quantum Electron 52(3):1–19

    Google Scholar 

  • Rakibul Islam M, Moinul Islam Khan M, Mehjabin F, Alam Chowdhury J, Isla M (2020) Design of a fabrication friendly and highly sensitive surface plasmon resonance-based photonic crystal fiber biosensor. Results Phys 19:103501

    Google Scholar 

  • Sharma AK, Jha R, Pattanaik HS, Mohr GJ (2009) Design considerations for surface plasmon resonance-based fiber-optic detection of human blood group. J Biomed Opt 14(6):064041

    Google Scholar 

  • Wang L, Zeng YP, Wang ZY, Xia XP, Liang QQ (2018) A refractive index sensor based on an analogy T shaped metal–insulator–metal waveguide. Optik 172(June):1199–1204

    CAS  Google Scholar 

  • Wen K, Yan L, Hu Y, Chen L, Lei L (2014a) A plasmonic wavelength-selected intersection structure. Plasmonics 9(3):685–690

    CAS  Google Scholar 

  • Wen K, Yan L, Pan W, Luo B, Guo Z, Guo Y, Luo X (2014b) Electromagnetically induced transparency-like transmission in a compact side-coupled t-shaped resonator. J Lightwave Technol 32(9):1701–1707

    Google Scholar 

  • Wu T, Liu Y, Yu Z, Peng Y, Shu C, Ye H (2014) The sensing characteristics of plasmonic waveguide with a ring resonator. Opt Express 22(7):7669

    CAS  Google Scholar 

  • Xiao S, Liu L, Qiu M (2006) Resonator channel drop filters in a plasmon-polaritons metal. Opt Express 14(7):2932

    Google Scholar 

  • Yahya M, Saghir MZ (2016) Empirical modelling to predict the refractive index of human blood. Phys Med Biol 61(4):1405–1415

    CAS  Google Scholar 

  • Yan SB, Luo L, Xue CY, Zhang ZD (2015) A refractive index sensor based on a metal–insulator–metal waveguide-coupled ring resonator. Sensors (Switzerland) 15(11):29183–29191

    CAS  Google Scholar 

  • Yang Q, Liu X, Guo F, Bai H, Zhang B, Li X, Tan Y, Zhang Z (2020) Multiple Fano resonance in MIM waveguide system with cross-shaped cavity. Optik 220:165163

    CAS  Google Scholar 

  • Ye Y, Xu J, Huang B, Wu X, Zhang W, Wang X, Nikdast M, Wang Z, Liu W, Wang Z (2013a) 3-D mesh-based optical network-on-chip for multiprocessor system-on-chip. IEEE Trans Comput Aided Design Integr Circuits Syst 32(4):584–596

    Google Scholar 

  • Ye Y, Xu J, Wu X, Zhang W, Wang X, Nikdast M, Wang Z, Liu W (2013b) System-level modeling and analysis of thermal effects in optical networks-on-chip. IEEE Trans Very Large Scale Integr (VLSI) Syst 21(2):292–305

    Google Scholar 

  • Yeh YL (2008) Real-time measurement of glucose concentration and average refractive index using a laser interferometer. Opt Lasers Eng 46(9):666–670

    Google Scholar 

  • Yin Y, Qiu T, Li J, Chu PK (2012) Plasmonic nano-lasers. Nano Energy 1(1):25–41

    CAS  Google Scholar 

  • Yue W, Wang Z, Yang Y, Chen L, Syed A, Wong K, Wang X (2012) Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering. J Micromech Microeng 22(12):125007

    Google Scholar 

  • Zafar R, Salim M (2015) Achievement of large normalized delay bandwidth product by exciting electromagnetic-induced transparency in plasmonic waveguide. IEEE J Quantum Electron 51(10):1–6

    Google Scholar 

  • Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons. Phys Rep 408(3–4):131–314

    CAS  Google Scholar 

  • Zhan S, Peng Y, He Z, Li B, Chen Z, Xu H, Li H (2016) Tunable nanoplasmonic sensor based on the asymmetric degree of fano resonance in MDM waveguide. Nature Publishing Group, Berlin, pp 1–8

    Google Scholar 

  • Zhang Z, Wang H, Zhang Z (2013) Fano resonance in a gear-shaped nanocavity of the metal–insulator–metal waveguide. Plasmonics 8:797–801

    Google Scholar 

  • Zhang Y, Li S, Zhang X, Chen Y, Wang L, Zhang Y, Yu L (2016a) Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor. Opt Commun 370:203–208

    CAS  Google Scholar 

  • Zhang Z, Luo L, Xue C, Zhang W, Yan S (2016b) Fano resonance based on metal–insulator–metal waveguide-coupled double rectangular cavities for plasmonic nanosensors. Sensors (Switzerland) 16(5):22–24

    Google Scholar 

  • Zhou J, Chen H, Zhang Z, Tang J, Cui J, Xue C, Yan S (2017) Transmission and refractive index sensing based on Fano resonance in MIM waveguide-coupled trapezoid cavity. AIP Adv 7(1):015020

    Google Scholar 

  • Zou S, Wang F, Liang R, Xiao L, Hu M (2015) A nanoscale refractive index sensor based on asymmetric plasmonic waveguide with a ring resonator: a review. IEEE Sens J 15(2):646–650

    CAS  Google Scholar 

Download references

Funding

No funding was received for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Farhad Hassan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagor, R.H., Hassan, M.F., Yaseer, A.A. et al. Highly sensitive refractive index sensor optimized for blood group sensing utilizing the Fano resonance. Appl Nanosci 11, 521–534 (2021). https://doi.org/10.1007/s13204-020-01622-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-020-01622-5

Keywords

Navigation