1932

Abstract

Model organisms are extensively used in research as accessible and convenient systems for studying a particular area or question in biology. Traditionally, only a limited number of organisms have been studied in detail, but modern genomic tools are enabling researchers to extend beyond the set of classical model organisms to include novel species from less-studied phylogenetic groups. This review focuses on model species for an important group of multicellular organisms, the brown algae. The development of genetic and genomic tools for the filamentous brown alga has led to it emerging as a general model system for this group, but additional models, such as or , remain of interest for specific biological questions. In addition, has emerged as a model system to directly address applied questions related to algal aquaculture. We discuss the past, present, and future of brown algal model organisms in relation to the opportunities and challenges in brown algal research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-030620-093031
2020-11-23
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/genet/54/1/annurev-genet-030620-093031.html?itemId=/content/journals/10.1146/annurev-genet-030620-093031&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abrash EB, Bergmann DC. 2009. Asymmetric cell divisions: a view from plant development. Dev. Cell 16:6783–96
    [Google Scholar]
  2. 2. 
    Ahmed S, Cock JM, Pessia E, Luthringer R, Cormier A et al. 2014. A haploid system of sex determination in the brown alga Ectocarpus sp. Curr. Biol. 24:171945–57
    [Google Scholar]
  3. 3. 
    Alessa L, Kropf DL. 1999. F-actin marks the rhizoid pole in living Pelvetia compressa zygotes. Development 126:1201–9
    [Google Scholar]
  4. 4. 
    André J, Harrison S, Towers K, Qi X, Vaughan S et al. 2013. The tubulin cofactor C family member TBCCD1 orchestrates cytoskeletal filament formation. J. Cell Sci. 126:Pt. 235350–56
    [Google Scholar]
  5. 5. 
    Arun A, Coelho SM, Peters AF, Bourdareau S, Peres L et al. 2019. Convergent recruitment of TALE homeodomain life cycle regulators to direct sporophyte development in land plants and brown algae. eLife 8:e43101
    [Google Scholar]
  6. 6. 
    Arun A, Peters NT, Scornet D, Peters AF, Cock JM, Coelho SM 2013. Non-cell autonomous regulation of life cycle transitions in the model brown alga Ectocarpus. . New Phytol 197:2503–10
    [Google Scholar]
  7. 7. 
    Avia K, Coelho SM, Montecinos GJ, Cormier A, Lerck F et al. 2017. High-density genetic map and identification of QTLs for responses to temperature and salinity stresses in the model brown alga Ectocarpus. Sci. . Rep 7:43241
    [Google Scholar]
  8. 8. 
    Avia K, Lipinska AP, Mignerot L, Montecinos AE, Jamy M et al. 2018. Genetic diversity in the UV sex chromosomes of the brown alga Ectocarpus. . Genes 9:6286
    [Google Scholar]
  9. 9. 
    Bachtrog D, Kirkpatrick M, Mank JE, McDaniel SF, Pires JC et al. 2011. Are all sex chromosomes created equal. ? Trends Genet 27:9350–57
    [Google Scholar]
  10. 10. 
    Baldauf SL. 2008. An overview of the phylogeny and diversity of eukaryotes. J. Syst. Evol. 46:3263–73
    [Google Scholar]
  11. 11. 
    Banham AH, Asante-Owusu RN, Gottgens B, Thompson S, Kingsnorth CS et al. 1995. An N-terminal dimerization domain permits homeodomain proteins to choose compatible partners and initiate sexual development in the mushroom Coprinus cinereus. . Plant Cell 7:6773–83
    [Google Scholar]
  12. 12. 
    Basu S, Sun H, Brian L, Quatrano RL, Muday GK 2002. Early embryo development in Fucus distichus is auxin sensitive. Plant Physiol 130:1292–302
    [Google Scholar]
  13. 13. 
    Berger F, Brownlee C. 1993. Ratio confocal imaging of free cytoplasmic calcium gradients in polarising and polarised Fucus zygotes. Zygote 1:19–15
    [Google Scholar]
  14. 14. 
    Berger F, Brownlee C. 1994. Photopolarization of the Fucus sp. zygote by blue light involves a plasma membrane redox chain. Plant Physiol 105:2519–27
    [Google Scholar]
  15. 15. 
    Berger F, Taylor A, Brownlee C 1994. Cell fate determination by the cell wall in early Fucus development. Science 263:51521421–23
    [Google Scholar]
  16. 16. 
    Bisgrove SR, Kropf DL. 2001. Cell wall deposition during morphogenesis in fucoid algae. Planta 212:5–6648–58
    [Google Scholar]
  17. 17. 
    Bogaert KA, Arun A, Coelho SM, De Clerck O 2013. Brown algae as a model for plant organogenesis. Methods Mol. Biol. 959:97–125
    [Google Scholar]
  18. 18. 
    Bogaert KA, Beeckman T, De Clerck O 2015. Photopolarization of Fucus zygotes is determined by time sensitive vectorial addition of environmental cues during axis amplification. Front. Plant Sci. 6:26
    [Google Scholar]
  19. 19. 
    Bogaert KA, Beeckman T, De Clerck O 2017. Two-step cell polarization in algal zygotes. Nat. Plants 3:16221
    [Google Scholar]
  20. 20. 
    Bogaert KA, Blommaert L, Ljung K, Beeckman T, De Clerck O 2019. Auxin function in the brown alga Dictyota dichotoma. . Plant Physiol 179:1280–99
    [Google Scholar]
  21. 21. 
    Bothwell JHF, Kisielewska J, Genner MJ, McAinsh MR, Brownlee C 2008. Ca2+ signals coordinate zygotic polarization and cell cycle progression in the brown alga Fucus serratus. . Development 135:122173–81
    [Google Scholar]
  22. 22. 
    Bouget FY, Berger F, Brownlee C 1998. Position dependent control of cell fate in the Fucus embryo: role of intercellular communication. Development 125:111999–2008
    [Google Scholar]
  23. 23. 
    Bouget FY, Corellou F, Kropf DL 2001. Fucoid algae as model organisms for investigating early embryogenesis. Cah. Biol. Mar. 42:101–7
    [Google Scholar]
  24. 24. 
    Bourdareau S, Tirichine L, Lombard B, Loew D, Scornet D et al. 2020. Histone modifications during the life cycle of the brown alga Ectocarpus. bioRxiv 2020.03.09.980763. https://doi.org/10.1101/2020.03.09.980763
    [Crossref]
  25. 25. 
    Brodie J, Chan CX, De Clerck O, Cock JM, Coelho SM et al. 2017. The algal revolution. Trends Plant Sci 22:8726–38
    [Google Scholar]
  26. 26. 
    Brownlee C, Berger F. 1995. Extracellular matrix and pattern in plant embryos: on the lookout for developmental information. Trends Genet 11:9344–48
    [Google Scholar]
  27. 27. 
    Brownlee C, Bouget FY. 1998. Polarity determination in Fucus: from zygote to multicellular embryo. Semin. Cell Dev. Biol. 9:2179–85
    [Google Scholar]
  28. 28. 
    Brownlee C, Bouget FY, Corellou F 2001. Choosing sides: establishment of polarity in zygotes of fucoid algae. Semin. Cell Dev. Biol. 12:5345–51
    [Google Scholar]
  29. 29. 
    Brownlee C, Wood JW. 1986. A gradient of cytoplasmic free calcium a in growing rhizoid cells of Fucus serratus. . Nature 320:6063624–26
    [Google Scholar]
  30. 30. 
    Callaini G, Dallai R, Riparbelli MG 1992. Cytochalasin induces spindle fusion in the syncytial blastoderm of the early Drosophila embryo. Biol. Cell 74:3249–54
    [Google Scholar]
  31. 31. 
    Charrier B, Coelho S, Le Bail A, Tonon T, Michel G et al. 2008. Development and physiology of the brown alga Ectocarpus siliculosus: two centuries of research. New Phytol 177:2319–32
    [Google Scholar]
  32. 32. 
    Cock JM, Collén J. 2015. Independent emergence of complex multicellularity in the brown and red algae. Evolutionary Transitions to Multicellular Life I Ruiz-Trillo, A Nedelcu 335–61 Dordrecht, Neth: Springer
    [Google Scholar]
  33. 33. 
    Cock JM, Liu F, Duan D, Bourdareau S, Lipinska AP et al. 2017. Rapid evolution of microRNA loci in the brown algae. Genome Biol. Evol. 9:3740–49
    [Google Scholar]
  34. 34. 
    Cock JM, Sterck L, Rouzé P, Scornet D, Allen AE et al. 2010. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465:7298617–21
    [Google Scholar]
  35. 35. 
    Coelho SM, Brownlee C, Bothwell JHF 2008. A tip-high, Ca2+-interdependent, reactive oxygen species gradient is associated with polarized growth in Fucus serratus zygotes. Planta 227:51037–46
    [Google Scholar]
  36. 36. 
    Coelho SM, Brownlee C, Bothwell JHF 2008. Feedback control of reactive oxygen and Ca2+ signaling during brown algal embryogenesis. Plant Signal. Behav. 3:8570–72
    [Google Scholar]
  37. 37. 
    Coelho SM, Godfroy O, Arun A, Le Corguillé G, Peters AF, Cock JM 2011. Genetic regulation of life cycle transitions in the brown alga Ectocarpus. Plant Signal. . Behav 6:111858–60
    [Google Scholar]
  38. 38. 
    Coelho SM, Godfroy O, Arun A, Le Corguillé G, Peters AF, Cock JM 2011. OUROBOROS is a master regulator of the gametophyte to sporophyte life cycle transition in the brown alga Ectocarpus. . PNAS 108:2811518–23
    [Google Scholar]
  39. 39. 
    Coelho SM, Gueno J, Lipinska AP, Cock JM, Umen JG 2018. UV chromosomes and haploid sexual systems. Trends Plant Sci 23:9794–807
    [Google Scholar]
  40. 40. 
    Coelho SM, Peters AF, Charrier B, Roze D, Destombe C et al. 2007. Complex life cycles of multicellular eukaryotes: new approaches based on the use of model organisms. Gene 406:1–2152–70
    [Google Scholar]
  41. 41. 
    Coelho SM, Scornet D, Rousvoal S, Peters N, Dartevelle L et al. 2012. Ectocarpus: a model organism for the brown algae. Cold Spring Harb. Protoc. 2012:193–98
    [Google Scholar]
  42. 42. 
    Coelho SM, Scornet D, Rousvoal S, Peters NT, Dartevelle L et al. 2012. How to cultivate Ectocarpus. Cold Spring Harb. Protoc 2012:2258–61
    [Google Scholar]
  43. 43. 
    Coelho SM, Taylor AR, Ryan KP, Sousa-Pinto I, Brown MT, Brownlee C 2002. Spatiotemporal patterning of reactive oxygen production and Ca2+ wave propagation in Fucus rhizoid cells. Plant Cell 14:102369–81
    [Google Scholar]
  44. 44. 
    Corellou F, Bisgrove SR, Kropf DL, Meijer L, Kloareg B, Bouget FY 2000. A S/M DNA replication checkpoint prevents nuclear and cytoplasmic events of cell division including centrosomal axis alignment and inhibits activation of cyclin-dependent kinase-like proteins in fucoid zygotes. Development 127:81651–60
    [Google Scholar]
  45. 45. 
    Corellou F, Brownlee C, Detivaud L, Kloareg B, Bouget FY 2001. Cell cycle in the fucus zygote parallels a somatic cell cycle but displays a unique translational regulation of cyclin-dependent kinases. Plant Cell 13:3585–98
    [Google Scholar]
  46. 46. 
    Cormier A, Avia K, Sterck L, Derrien T, Wucher V et al. 2017. Re-annotation, improved large-scale assembly and establishment of a catalogue of noncoding loci for the genome of the model brown alga Ectocarpus. . New Phytol 214:219–32
    [Google Scholar]
  47. 47. 
    De Schutter K, Joubes J, Cools T, Verkest A, Corellou F et al. 2007. Arabidopsis WEE1 kinase controls cell cycle arrest in response to activation of the DNA integrity checkpoint. Plant Cell 19:1211–25
    [Google Scholar]
  48. 48. 
    Deniaud-Bouet E, Hardouin K, Potin P, Kloareg B, Herve C 2017. A review about brown algal cell walls and fucose-containing sulfated polysaccharides: cell wall context, biomedical properties and key research challenges. Carbohydr. Polym. 175:395–408
    [Google Scholar]
  49. 49. 
    Deniaud-Bouet E, Kervarec N, Michel G, Tonon T, Kloareg B, Herve C 2014. Chemical and enzymatic fractionation of cell walls from Fucales: insights into the structure of the extracellular matrix of brown algae. Ann. Bot. 114:61203–16
    [Google Scholar]
  50. 50. 
    Dittami SM, Barbeyron T, Boyen C, Cambefort J, Collet G et al. 2014. Genome and metabolic network of “Candidatus Phaeomarinobacter ectocarpi” Ec32, a new candidate genus of Alphaproteobacteria frequently associated with brown algae. Front. Genet. 5:241
    [Google Scholar]
  51. 51. 
    Dittami SM, Corre E, Brillet-Gueguen L, Lipinska AP, Pontoizeau N et al. 2020. The genome of Ectocarpus subulatus—a highly stress-tolerant brown alga. Mar. Genom. 52:100740
    [Google Scholar]
  52. 52. 
    Fan X, Han W, Teng L, Jiang P, Zhang X et al. 2020. Single-base methylome profiling of the giant kelp Saccharina japonica reveals significant differences in DNA methylation to microalgae and plants. New Phytol 225:1234–49
    [Google Scholar]
  53. 53. 
    Fang T, Li J. 1966. The breeding of a long-frond variety of Laminaria japonica Aresch. Oceanol. Limnol. Sin. 8:43–50
    [Google Scholar]
  54. 54. 
    Farnham G, Strittmatter M, Coelho S, Cock JM, Brownlee C 2013. Gene silencing in Fucus embryos: developmental consequences of RNAi-mediated cytoskeletal disruption. J. Phycol. 49:5819–29
    [Google Scholar]
  55. 55. 
    Feldman JL, Marshall WF. 2009. ASQ2 encodes a TBCC-like protein required for mother-daughter centriole linkage and mitotic spindle orientation. Curr. Biol. 19:141238–43
    [Google Scholar]
  56. 56. 
    Goddard H, Manison NF, Tomos D, Brownlee C 2000. Elemental propagation of calcium signals in response-specific patterns determined by environmental stimulus strength. PNAS 97:41932–37
    [Google Scholar]
  57. 57. 
    Godfroy O, Peters AF, Coelho SM, Cock JM 2015. Genome-wide comparison of ultraviolet and ethyl methanesulphonate mutagenesis methods for the brown alga Ectocarpus. Mar. . Genom 24:109–13
    [Google Scholar]
  58. 58. 
    Godfroy O, Uji T, Nagasato C, Lipinska AP, Scornet D et al. 2017. DISTAG/TBCCd1 is required for basal cell fate determination in Ectocarpus. . Plant Cell 29:3102–22
    [Google Scholar]
  59. 59. 
    Goncalves J, Nolasco S, Nascimento R, Lopez Fanarraga M, Zabala JC, Soares H 2010. TBCCD1, a new centrosomal protein, is required for centrosome and Golgi apparatus positioning. EMBO Rep 11:3194–200
    [Google Scholar]
  60. 60. 
    Gschloessl B, Guermeur Y, Cock JM 2008. HECTAR: a method to predict subcellular targeting in heterokonts. BMC Bioinform 9:393
    [Google Scholar]
  61. 61. 
    Hable WE, Kropf DL. 1998. Roles of secretion and the cytoskeleton in cell adhesion and polarity establishment in Pelvetia compressa zygotes. Dev. Biol. 198:145–56
    [Google Scholar]
  62. 62. 
    Hable WE, Kropf DL. 2000. Sperm entry induces polarity in fucoid zygotes. Development 127:3493–501
    [Google Scholar]
  63. 63. 
    Hartwell LH, Weinert TA. 1989. Checkpoints: controls that ensure the order of cell cycle events. Science 246:4930629–34
    [Google Scholar]
  64. 64. 
    Hedgethorne K, Eustermann S, Yang J-C, Ogden TEH, Neuhaus D, Bloomfield G 2017. Homeodomain-like DNA binding proteins control the haploid-to-diploid transition in Dictyostelium. Sci. Adv 3:9e1602937
    [Google Scholar]
  65. 65. 
    Heesch S, Cho GY, Peters AF, Le Corguillé G, Falentin C et al. 2010. A sequence-tagged genetic map for the brown alga Ectocarpus siliculosus provides large-scale assembly of the genome sequence. New Phytol 188:142–51
    [Google Scholar]
  66. 66. 
    Herve C, Simeon A, Jam M, Cassin A, Johnson KL et al. 2016. Arabinogalactan proteins have deep roots in eukaryotes: identification of genes and epitopes in brown algae and their role in Fucus serratus embryo development. New Phytol 209:41428–41
    [Google Scholar]
  67. 67. 
    Horst NA, Katz A, Pereman I, Decker EL, Ohad N, Reski R 2016. A single homeobox gene triggers phase transition, embryogenesis and asexual reproduction. Nat. Plants 2:15209
    [Google Scholar]
  68. 68. 
    Hull CM, Boily M-J, Heitman J 2005. Sex-specific homeodomain proteins Sxi1α and Sxi2a coordinately regulate sexual development in Cryptococcus neoformans. Eukaryot. . Cell 4:3526–35
    [Google Scholar]
  69. 69. 
    Hurd AM. 1920. Effect of unilateral monochromatic light and group orientation on the polarity of germinating Fucus spores. Bot. Gaz. 70:125–50
    [Google Scholar]
  70. 70. 
    Huynh J-R, St. Johnston D 2004. The origin of asymmetry: early polarisation of the Drosophila germline cyst and oocyte. Curr. Biol. 14:11R438–49
    [Google Scholar]
  71. 71. 
    Immler S, Otto SP. 2015. The evolution of sex chromosomes in organisms with separate haploid sexes. Evolution 69:3694–708
    [Google Scholar]
  72. 72. 
    Inoue A, Ojima T. 2019. Functional identification of alginate lyase from the brown alga Saccharina japonica.. Sci. Rep 9:4937
    [Google Scholar]
  73. 73. 
    Jaffe LF. 1958. Tropistic responses of zygotes of the Fucaceae to polarized light. Exp. Cell Res. 15:2282–99
    [Google Scholar]
  74. 74. 
    Ji S-Q, Wang B, Lu M, Li F-L 2016. Direct bioconversion of brown algae into ethanol by thermophilic bacterium Defluviitalea phaphyphila. Biotechnol. . Biofuels 9:181
    [Google Scholar]
  75. 75. 
    Kamper J, Reichmann M, Romeis T, Bolker M, Kahmann R 1995. Multiallelic recognition: nonself-dependent dimerization of the bE and bW homeodomain proteins in Ustilago maydis. . Cell 81:173–83
    [Google Scholar]
  76. 76. 
    Kawai H, Hanyuda T, Draisma SGA, Wilce RT, Andersen RA 2015. Molecular phylogeny of two unusual brown algae, Phaeostrophion irregulare and Platysiphon glacialis, proposal of the Stschapoviales ord. nov. and Platysiphonaceae fam. nov., and a re-examination of divergence times for brown algal orders. J. Phycol. 51:5918–28
    [Google Scholar]
  77. 77. 
    KleinJan H, Jeanthon C, Boyen C, Dittami SM 2017. Exploring the cultivable Ectocarpus microbiome. Front. Microbiol. 8:2456
    [Google Scholar]
  78. 78. 
    Kropf DL, Kloareg B, Quatrano RS 1988. Cell wall is required for fixation of the embryonic axis in Fucus zygotes. . Science 239:4836187–90
    [Google Scholar]
  79. 79. 
    Lee J-H, Lin H, Joo S, Goodenough U 2008. Early sexual origins of homeoprotein heterodimerization and evolution of the plant KNOX/BELL family. Cell 133:5829–40
    [Google Scholar]
  80. 80. 
    Leebens-Mack JH, Barker MS, Carpenter EJ, Deyholos MK, Gitzendanner MA et al. 2019. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574:7780679–85
    [Google Scholar]
  81. 81. 
    Lemesheva V, Birkemeyer C, Garbary D, Tarakhovskaya E 2020. Vanadium-dependent haloperoxidase activity and phlorotannin incorporation into the cell wall during early embryogenesis of Fucus vesiculosus (Phaeophyceae). Eur. J. Phycol. 55:3275–84
    [Google Scholar]
  82. 82. 
    Leyser O. 2018. Auxin signaling. Plant Physiol 176:1465–79
    [Google Scholar]
  83. 83. 
    Li X, Cong Y, Yang G, Shi Y, Qu S et al. 2007. Trait evaluation and trial cultivation of Dongfang No. 2, the hybrid of a male gametophyte clone of Laminaria longissima (Laminariales. Phaeophyta) and a female one of L. japonica. J. Appl. Phycol. 19:139–51
    [Google Scholar]
  84. 84. 
    Li X, Liu J, Cong Y, Qu S, Zhang Z et al. 2008. Breeding and trial cultivation of Dongfang No. 3, a hybrid of Laminaria gametophyte clones with a more than intraspecific but less than interspecific relationship. Aquaculture 280:176–80
    [Google Scholar]
  85. 85. 
    Li X, Zhang Z, Qu S, Liang G, Sun J et al. 2016. Improving seedless kelp (Saccharina japonica) during its domestication by hybridizing gametophytes and seedling-raising from sporophytes. Sci. Rep. 6:21255
    [Google Scholar]
  86. 86. 
    Li Y, Yang Y, Liu J, Wang X, Gao T, Duan D 2007. Genetic mapping of Laminaria japonica and L. longissima using amplified fragment length polymorphism markers in a “two-way pseudo-testcross” strategy. J. Integr. Plant Biol. 49:3392–400
    [Google Scholar]
  87. 87. 
    Lipinska AP, Ahmed S, Peters AF, Faugeron S, Cock JM, Coelho SM 2015. Development of PCR-based markers to determine the sex of kelps. PLOS ONE 10:10e0140535
    [Google Scholar]
  88. 88. 
    Lipinska AP, Cormier A, Luthringer R, Peters AF, Corre E et al. 2015. Sexual dimorphism and the evolution of sex-biased gene expression in the brown alga Ectocarpus. Mol. Biol. . Evol 32:61581–97
    [Google Scholar]
  89. 89. 
    Lipinska AP, Serrano-Serrano ML, Cormier A, Peters AF, Kogame K et al. 2019. Rapid turnover of life-cycle-related genes in the brown algae. Genome Biol 20:135
    [Google Scholar]
  90. 90. 
    Lipinska AP, Toda NRT, Heesch S, Peters AF, Cock JM, Coelho SM 2017. Multiple gene movements into and out of haploid sex chromosomes. Genome Biol 18:1104
    [Google Scholar]
  91. 91. 
    Liu F, Shao Z, Zhang H, Liu J, Wang X, Duan D 2010. QTL mapping for frond length and width in Laminaria japonica Aresch (Laminarales, Phaeophyta) using AFLP and SSR markers. Mar. Biotechnol. 12:4386–94
    [Google Scholar]
  92. 92. 
    Liu F, Sun X, Wang F, Wang W, Liang Z et al. 2014. Breeding, economic traits evaluation, and commercial cultivation of a new Saccharina variety “Huangguan No. 1. .” Aquacult. Int 22:51665–75
    [Google Scholar]
  93. 93. 
    Liu F, Wang X, Liu J, Fu W, Duan D, Yang Y 2009. Genetic mapping of the Laminaria Japonica (Laminarales, Phaeophyta) using amplified fragment length polymorphism markers. J. Phycol. 45:51228–33
    [Google Scholar]
  94. 94. 
    Liu F, Wang W, Sun X, Liang Z, Wang F 2015. Conserved and novel heat stress-responsive microRNAs were identified by deep sequencing in Saccharina japonica (Laminariales, Phaeophyta). Plant Cell Environ 38:71357–67
    [Google Scholar]
  95. 95. 
    Liu Y, Bi Y, Gu J, Li L, Zhou Z 2012. Localization of a female-specific marker on the chromosomes of the brown seaweed Saccharina japonica using fluorescence in situ hybridization. PLOS ONE 7:11e48784
    [Google Scholar]
  96. 96. 
    Luthringer R, Lipinska AP, Roze D, Cormier A, Macaisne N et al. 2015. The pseudoautosomal regions of the U/V sex chromosomes of the brown alga Ectocarpus exhibit unusual features. Mol. Biol. Evol. 32:112973–85
    [Google Scholar]
  97. 97. 
    Macaisne N, Liu F, Scornet D, Peters AF, Lipinska A et al. 2017. The Ectocarpus IMMEDIATE UPRIGHT gene encodes a member of a novel family of cysteine-rich proteins that have an unusual distribution across the eukaryotes. Development 144:409–18
    [Google Scholar]
  98. 98. 
    Martins MJF, Mota CF, Pearson GA 2013. Sex-biased gene expression in the brown alga Fucus vesiculosus. . BMC Genom 14:294
    [Google Scholar]
  99. 99. 
    McHugh DJ. 2003. A guide to the seaweed industry FAO Fisheries Tech. Pap. 441, Food Agric. Organ. U. N., Rome Italy:
  100. 100. 
    Michel G, Tonon T, Scornet D, Cock JM, Kloareg B 2010. Central and storage carbon metabolism of the brown alga Ectocarpus siliculosus: insights into the origin and evolution of storage carbohydrates in Eukaryotes. New Phytol 188:167–81
    [Google Scholar]
  101. 101. 
    Mignerot L, Avia K, Luthringer R, Lipinska AP, Peters AF et al. 2019. A key role for sex chromosomes in the regulation of parthenogenesis in the brown alga Ectocarpus. . PLOS Genet 15:6e1008211
    [Google Scholar]
  102. 102. 
    Müller DG. 1964. Life-cycle of Ectocarpus siliculosus from Naples, Italy. Nature 203:1402
    [Google Scholar]
  103. 103. 
    Müller DG. 1991. Mendelian segregation of a virus genome during host meiosis in the marine brown alga Ectocarpus siliculosus. J. . Plant Physiol 137:739–43
    [Google Scholar]
  104. 104. 
    Müller DG, Jaenicke L, Donike M, Akintobi T 1971. Sex attractant in a brown alga: chemical structure. Science 171:815–17
    [Google Scholar]
  105. 105. 
    Müller DG, Kapp M, Knippers R 1998. Viruses in marine brown algae. Adv. Virus Res. 50:49–67
    [Google Scholar]
  106. 106. 
    Nasmyth K, Shore D. 1987. Transcriptional regulation in the yeast life cycle. Science 237:48191162–70
    [Google Scholar]
  107. 107. 
    Nishitsuji K, Arimoto A, Iwai K, Sudo Y, Hisata K et al. 2016. A draft genome of the brown alga, Cladosiphon okamuranus, S-strain: a platform for future studies of ‘mozuku’ biology. DNA Res 23:6561–70
    [Google Scholar]
  108. 108. 
    Noatynska A, Tavernier N, Gotta M, Pintard L 2013. Coordinating cell polarity and cell cycle progression: What can we learn from flies and worms. ? Open Biol 3:8130083
    [Google Scholar]
  109. 109. 
    Novotny AM, Forman M. 1975. The composition and development of cell walls of Fucus embryos. Planta 122:167–78
    [Google Scholar]
  110. 110. 
    Nymark M, Sharma AK, Sparstad T, Bones AM, Winge P 2016. A CRISPR/Cas9 system adapted for gene editing in marine algae. Sci. Rep. 6:24951
    [Google Scholar]
  111. 111. 
    Otto SP, Pannell JR, Peichel CL, Ashman T-L, Charlesworth D et al. 2011. About PAR: the distinct evolutionary dynamics of the pseudoautosomal region. Trends Genet 27:9358–67
    [Google Scholar]
  112. 112. 
    Peters AF, Marie D, Scornet D, Kloareg B, Cock JM 2004. Proposal of Ectocarpus siliculosus (Ectocarpales, Phaeophyceae) as a model organism for brown algal genetics and genomics. J. Phycol. 40:61079–88
    [Google Scholar]
  113. 113. 
    Peters AF, Scornet D, Ratin M, Charrier B, Monnier A et al. 2008. Life-cycle-generation-specific developmental processes are modified in the immediate upright mutant of the brown alga Ectocarpus siliculosus. . Development 135:81503–12
    [Google Scholar]
  114. 114. 
    Prigent S, Collet G, Dittami SM, Delage L, Ethis de Corny F et al. 2014. The genome-scale metabolic network of Ectocarpus siliculosus (EctoGEM): a resource to study brown algal physiology and beyond. Plant J 80:2367–81
    [Google Scholar]
  115. 115. 
    Pu R, Robinson KR. 1998. Cytoplasmic calcium gradients and calmodulin in the early development of the fucoid alga Pelvetia compressa. J. . Cell Sci 111:Pt. 213197–207
    [Google Scholar]
  116. 116. 
    Quatrano RS. 1997. Cortical asymmetries direct the establishment of cell polarity and the plane of cell division in the Fucus embryo. Cold Spring Harb. Symp. Quant. Biol. 62:65–70
    [Google Scholar]
  117. 117. 
    Quatrano RS, Shaw SL. Role of the cell wall in the determination of cell polarity and the plane of cell division in Fucus embryos. Trends Plant Sci 2:115–21
    [Google Scholar]
  118. 118. 
    Quatrano RS, Stevens PT. 1976. Cell wall assembly in Fucus zygotes: I. Characterization of the polysaccharide components. Plant Physiol 58:2224–31
    [Google Scholar]
  119. 119. 
    Rabille H, Billoud B, Tesson B, Le Panse S, Rolland E, Charrier B 2019. The brown algal mode of tip growth: keeping stress under control. PLOS Biol 17:1e2005258
    [Google Scholar]
  120. 120. 
    Raff JW, Glover DM. 1988. Nuclear and cytoplasmic mitotic cycles continue in Drosophila embryos in which DNA synthesis is inhibited with aphidicolin. J. Cell Biol. 107:62009–19
    [Google Scholar]
  121. 121. 
    Rauh NR, Schmidt A, Bormann J, Nigg EA, Mayer TU 2005. Calcium triggers exit from meiosis II by targeting the APC/C inhibitor XErp1 for degradation. Nature 437:70611048–52
    [Google Scholar]
  122. 122. 
    Ritter A, Dittami SM, Goulitquer S, Correa JA, Boyen C et al. 2014. Transcriptomic and metabolomic analysis of copper stress acclimation in Ectocarpus siliculosus highlights signaling and tolerance mechanisms in brown algae. BMC Plant Biol 14:116
    [Google Scholar]
  123. 123. 
    Roberts SK, Gillot I, Brownlee C 1994. Cytoplasmic calcium and Fucus egg activation. Development 120:1155–63
    [Google Scholar]
  124. 124. 
    Robinson KR, Lorenzi R, Ceccarelli N, Gualtieri P 1998. Retinal identification in Pelvetia fastigiata. Biochem. Biophys. Res. Commun 243:3776–78
    [Google Scholar]
  125. 125. 
    Robinson KR, Miller BJ. 1997. The coupling of cyclic GMP and photopolarization of Pelvetia zygotes. Dev. Biol. 187:1125–30
    [Google Scholar]
  126. 126. 
    Rugiu L, Panova M, Pereyra RT, Jormalainen V 2020. Gene regulatory response to hyposalinity in the brown seaweed Fucus vesiculosus. . BMC Genom 21:42
    [Google Scholar]
  127. 127. 
    Sakakibara K, Ando S, Yip HK, Tamada Y, Hiwatashi Y et al. 2013. KNOX2 genes regulate the haploid-to-diploid morphological transition in land plants. Science 339:61231067–70
    [Google Scholar]
  128. 128. 
    Schuster M, Kahmann R. 2019. CRISPR-Cas9 genome editing approaches in filamentous fungi and oomycetes. Fungal Genet. Biol. 130:43–53
    [Google Scholar]
  129. 129. 
    Shan T, Pang S, Li J, Li X, Su L 2015. Construction of a high-density genetic map and mapping of a sex-linked locus for the brown alga Undaria pinnatifida (Phaeophyceae) based on large scale marker development by specific length amplified fragment (SLAF) sequencing. BMC Genom 16:902
    [Google Scholar]
  130. 130. 
    Song M, Pham HD, Seon J, Woo H-C 2015. Marine brown algae: a conundrum answer for sustainable biofuels production. Renew. Sustain. Energy Rev. 50:782–92
    [Google Scholar]
  131. 131. 
    Strittmatter M, Grenville-Briggs LJ, Breithut L, Van West P, Gachon CMM, Kupper FC 2016. Infection of the brown alga Ectocarpus siliculosus by the oomycete Eurychasma dicksonii induces oxidative stress and halogen metabolism. Plant Cell Environ 39:2259–71
    [Google Scholar]
  132. 132. 
    Tarver JE, Cormier A, Pinzón N, Taylor RS, Carré W et al. 2015. microRNAs and the evolution of complex multicellularity: identification of a large, diverse complement of microRNAs in the brown alga Ectocarpus. . Nucleic Acids Res 43:136384–98
    [Google Scholar]
  133. 133. 
    Torode TA, Siméon A, Marcus SE, Jam M, Le Moigne M-A et al. 2016. Dynamics of cell wall assembly during early embryogenesis in the brown alga Fucus. J. Exp. Bot 67:216089–100
    [Google Scholar]
  134. 134. 
    Tseng CK. 2001. Algal biotechnology industries and research activities in China. J. Appl. Phycol. 13:4375–80
    [Google Scholar]
  135. 135. 
    Umen JG. 2011. Evolution of sex and mating loci: an expanded view from Volvocine algae. Curr. Opin. Microbiol. 14:6634–41
    [Google Scholar]
  136. 136. 
    Umen JG, Coelho SM. 2019. Algal sex determination and the evolution of anisogamy. Annu. Rev. Microbiol. 73:267–91
    [Google Scholar]
  137. 137. 
    Van Heeckeren WJ, Dorris DR, Struhl K 1998. The mating-type proteins of fission yeast induce meiosis by directly activating mei3 transcription. Mol. Cell. Biol. 18:127317–26
    [Google Scholar]
  138. 138. 
    Wade R, Augyte S, Harden M, Nuzhdin S, Yarish C, Alberto F 2020. Macroalgal germplasm banking for conservation, food security, and industry. PLOS Biol 18:2e3000641
    [Google Scholar]
  139. 139. 
    Wang X, Chen Z, Li Q, Zhang J, Liu S, Duan D 2018. High-density SNP-based QTL mapping and candidate gene screening for yield-related blade length and width in Saccharina japonica (Laminariales, Phaeophyta). Sci. Rep. 8:113591
    [Google Scholar]
  140. 140. 
    Yang GP, Sun Y, Shi YY, Zhang L, Guo SS et al. 2009. Construction and characterization of a tentative amplified fragment length polymorphism-simple sequence repeat linkage map of Laminaria (Laminariales, Phaeophyta). J. Phycol. 45:873–78
    [Google Scholar]
  141. 141. 
    Yao H. 2019. Regulation of gametophyte-to-sporophyte transitions during the life cycle of Ectocarpus PhD Thesis, Sorbonne Univ Paris:
  142. 142. 
    Ye N, Zhang X, Miao M, Fan X, Zheng Y et al. 2015. Saccharina genomes provide novel insight into kelp biology. Nat. Commun. 6:6986
    [Google Scholar]
  143. 143. 
    Zhang J, Liu T, Feng R, Liu C, Chi S 2015. Genetic map construction and quantitative trait locus (QTL) detection of six economic traits using an F2 population of the hybrid from Saccharina longissima and Saccharina japonica. . PLOS ONE 10:5e0128588
    [Google Scholar]
  144. 144. 
    Zhang J, Liu Y, Yu D, Song H, Cui J, Liu T 2011. Study on high-temperature-resistant and high-yield Laminaria variety “Rongfu. .” J. Appl. Phycol. 23:2165–71
    [Google Scholar]
  145. 145. 
    Zhang J, Wang X, Yao J, Li Q, Liu F et al. 2017. Effect of domestication on the genetic diversity and structure of Saccharina japonica populations in China. Sci. Rep. 7:42158
    [Google Scholar]
  146. 146. 
    Zhang J, Yao J-T, Sun Z-M, Fu G, Galanin DA et al. 2015. Phylogeographic data revealed shallow genetic structure in the kelp Saccharina japonica (Laminariales, Phaeophyta). BMC Evol. Biol. 15:1237
    [Google Scholar]
  147. 147. 
    Zhang Q-S, Tang X-X, Cong Y-Z, Qu S-C, Luo S-J, Yang G-P 2007. Breeding of an elite Laminaria variety 90-1 through inter-specific gametophyte crossing. J. Appl. Phycol. 19:4303–11
    [Google Scholar]
/content/journals/10.1146/annurev-genet-030620-093031
Loading
/content/journals/10.1146/annurev-genet-030620-093031
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error