Predicting plasticity in disordered solids from structural indicators

D. Richard, M. Ozawa, S. Patinet, E. Stanifer, B. Shang, S. A. Ridout, B. Xu, G. Zhang, P. K. Morse, J.-L. Barrat, L. Berthier, M. L. Falk, P. Guan, A. J. Liu, K. Martens, S. Sastry, D. Vandembroucq, E. Lerner, and M. L. Manning
Phys. Rev. Materials 4, 113609 – Published 24 November 2020
PDFHTMLExport Citation

Abstract

Amorphous solids lack long-range order. Therefore identifying structural defects—akin to dislocations in crystalline solids—that carry plastic flow in these systems remains a daunting challenge. By comparing many different structural indicators in computational models of glasses, under a variety of conditions we carefully assess which of these indicators are able to robustly identify the structural defects responsible for plastic flow in amorphous solids. We further demonstrate that the density of defects changes as a function of material preparation and strain in a manner that is highly correlated with the macroscopic material response. Our work represents an important step towards predicting how and when an amorphous solid will fail from its microscopic structure.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
4 More
  • Received 22 June 2020
  • Revised 26 October 2020
  • Accepted 3 November 2020

DOI:https://doi.org/10.1103/PhysRevMaterials.4.113609

©2020 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied PhysicsNonlinear Dynamics

Authors & Affiliations

D. Richard1,2,*, M. Ozawa3,4, S. Patinet5, E. Stanifer2, B. Shang6,7, S. A. Ridout8, B. Xu6,9, G. Zhang8, P. K. Morse10, J.-L. Barrat7, L. Berthier4,11, M. L. Falk12,9,13,14, P. Guan6, A. J. Liu8, K. Martens7, S. Sastry15, D. Vandembroucq5, E. Lerner1, and M. L. Manning2,†

  • 1Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
  • 2Department of Physics, Syracuse University, Syracuse, New York 13244, USA
  • 3Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
  • 4Laboratoire Charles Coulomb, UMR 5221 CNRS-Université de Montpellier, Montpellier, France
  • 5PMMH, CNRS UMR 7636, ESPCI Paris, PSL University, Sorbonne Université, Université de Paris, F-75005 Paris, France
  • 6Beijing Computational Science Research Center, Beijing 100193, China
  • 7Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
  • 8Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
  • 9Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
  • 10Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
  • 11Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB 2 1EW, United Kingdom
  • 12Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
  • 13Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
  • 14Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, Maryland 21218, USA
  • 15Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur Campus, Bengaluru 560064, India

  • *d.richard@uva.nl
  • mmanning@syr.edu

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 4, Iss. 11 — November 2020

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Materials

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×