Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Novel human immunomodulatory T cell receptors and their double-edged potential in autoimmunity, cardiovascular disease and cancer

Abstract

In the last decade, approaches based on T cells and their immunomodulatory receptors have emerged as a solid improvement in treatments for various types of cancer. However, the roles of these molecules in the therapeutic context of autoimmune and cardiovascular diseases are still relatively unexplored. Here, we review the best known and most commonly used immunomodulatory T cell receptors in clinical practice (PD-1 and CTLA-4), along with the rest of the receptors with known functions in animal models, which have great potential as modulators in human pathologies in the medium term. Among these other receptors is the receptor CD69, which has recently been described to be expressed in mouse and human T cells in autoimmune and cardiovascular diseases and cancer. However, inhibition of these receptors individually or in combination by drugs or monoclonal antibodies generates a loss of immunological tolerance and can trigger multiple autoimmune disorders in different organs and immune-related adverse effects. In the coming decades, knowledge on the functions of different immunomodulatory receptors will be pivotal for the development of new and better therapies with less harmful side effects. In this review, we discuss the roles of these receptors in the control of immunity from a perspective focused on therapeutic potential in not only cancer but also autoimmune diseases, such as systemic lupus erythematosus, autoimmune diabetes and rheumatoid arthritis, and cardiovascular diseases, such as atherosclerosis, acute myocardial infarction, and myocarditis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Boardman, D. A. & Levings, M. K. Cancer immunotherapies repurposed for use in autoimmunity. Nat. Biomed. Eng. 3, 259–263 (2019).

    Article  PubMed  Google Scholar 

  2. Lutgens, E. et al. Immunotherapy for cardiovascular disease. Eur. Heart J. 40, 3937–3946 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Murphy, K. A. et al. Immunomodulatory receptors are differentially expressed in B and T cell subsets relevant to autoimmune disease. Clin. Immunol. 209, 108276 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Gonzalez-Amaro, R., Cortes, J. R., Sanchez-Madrid, F. & Martin, P. Is CD69 an effective brake to control inflammatory diseases? Trends Mol. Med. 19, 625–632 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Watanabe, N. et al. BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat. Immunol. 4, 670–679 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Sharpe, A. H. & Pauken, K. E. The diverse functions of the PD1 inhibitory pathway. Nat. Rev. Immunol. 18, 153–167 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Krummel, M. F. & Allison, J. P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med. 182, 459–465 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271–275 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Liu, X. et al. Cutting edge: a critical role of B and T lymphocyte attenuator in peripheral T cell tolerance induction. J. Immunol. 182, 4516–4520 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Sedy, J. R. et al. B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator. Nat. Immunol. 6, 90–98 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Huard, B., Prigent, P., Tournier, M., Bruniquel, D. & Triebel, F. CD4/major histocompatibility complex class II interaction analyzed with CD4- and lymphocyte activation gene-3 (LAG-3)-Ig fusion proteins. Eur. J. Immunol. 25, 2718–2721 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Anderson, A. C., Joller, N. & Kuchroo, V. K. Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity 44, 989–1004 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhu, C. et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat. Immunol. 6, 1245–1252 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Huang, Y. H. et al. CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature 517, 386–390 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Harjunpaa, H. & Guillerey, C. TIGIT as an emerging immune checkpoint. Clin. Exp. Immunol. 200, 108–119 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Reches, A. et al. Nectin4 is a novel TIGIT ligand which combines checkpoint inhibition and tumor specificity. J. Immunother. Cancer 8, https://doi.org/10.1136/jitc-2019-000266 (2020).

  17. Yu, X. et al. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat. Immunol. 10, 48–57 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Cannons, J. L., Tangye, S. G. & Schwartzberg, P. L. SLAM family receptors and SAP adaptors in immunity. Annu. Rev. Immunol. 29, 665–705 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Blackburn, S. D. et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat. Immunol. 10, 29–37 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Nowak, E. C. et al. Immunoregulatory functions of VISTA. Immunol. Rev. 276, 66–79 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, L. et al. VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses. J. Exp. Med. 208, 577–592 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jones, N. H. et al. Isolation of complementary DNA clones encoding the human lymphocyte glycoprotein T1/Leu-1. Nature 323, 346–349 (1986).

    Article  CAS  PubMed  Google Scholar 

  23. Huang, H. J., Jones, N. H., Strominger, J. L. & Herzenberg, L. A. Molecular cloning of Ly-1, a membrane glycoprotein of mouse T lymphocytes and a subset of B cells: molecular homology to its human counterpart Leu-1/T1 (CD5). Proc. Natl Acad. Sci. USA 84, 204–208 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brossard, C., Semichon, M., Trautmann, A. & Bismuth, G. CD5 inhibits signaling at the immunological synapse without impairing its formation. J. Immunol. 170, 4623–4629 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Tabbekh, M., Mokrani-Hammani, M., Bismuth, G. & Mami-Chouaib, F. T-cell modulatory properties of CD5 and its role in antitumor immune responses. Oncoimmunology 2, e22841 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sancho, D., Gomez, M. & Sanchez-Madrid, F. CD69 is an immunoregulatory molecule induced following activation. Trends Immunol. 26, 136–140 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Lopez-Cabrera, M. et al. Molecular cloning, expression, and chromosomal localization of the human earliest lymphocyte activation antigen AIM/CD69, a new member of the C-type animal lectin superfamily of signal-transmitting receptors. J. Exp. Med. 178, 537–547 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Martin, P. & Sanchez-Madrid, F. CD69: an unexpected regulator of TH17 cell-driven inflammatory responses. Sci. Signal. 4, pe14 (2011).

    PubMed  Google Scholar 

  29. Martin, P. et al. CD69 association with Jak3/Stat5 proteins regulates Th17 cell differentiation. Mol. Cell Biol. 30, 4877–4889 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. de la Fuente, H. et al. The leukocyte activation receptor CD69 controls T cell differentiation through its interaction with galectin-1. Mol. Cell Biol. 34, 2479–2487 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Lin, C. R. et al. Glycosylation-dependent interaction between CD69 and S100A8/S100A9 complex is required for regulatory T-cell differentiation. FASEB J. 29, 5006–5017 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Tsilingiri, K. et al. Oxidized low-density lipoprotein receptor in lymphocytes prevents atherosclerosis and predicts subclinical disease. Circulation 139, 243–255 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Cibrian, D. et al. CD69 controls the uptake of L-tryptophan through LAT1-CD98 and AhR-dependent secretion of IL-22 in psoriasis. Nat. Immunol. 17, 985–996 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Rosenblum, M. D., Remedios, K. A. & Abbas, A. K. Mechanisms of human autoimmunity. J. Clin. Invest. 125, 2228–2233 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nishimura, H., Honjo, T. & Minato, N. Facilitation of beta selection and modification of positive selection in the thymus of PD-1-deficient mice. J. Exp. Med. 191, 891–898 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sharpe, A. H., Wherry, E. J., Ahmed, R. & Freeman, G. J. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat. Immunol. 8, 239–245 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Nishimura, H., Nose, M., Hiai, H., Minato, N. & Honjo, T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11, 141–151 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Kasagi, S. et al. Anti-programmed cell death 1 antibody reduces CD4+PD-1+ T cells and relieves the lupus-like nephritis of NZB/W F1 mice. J. Immunol. 184, 2337–2347 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Wong, M., La Cava, A., Singh, R. P. & Hahn, B. H. Blockade of programmed death-1 in young (New Zealand black x New Zealand white)F1 mice promotes the activity of suppressive CD8+ T cells that protect from lupus-like disease. J. Immunol. 185, 6563–6571 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Salama, A. D. et al. Critical role of the programmed death-1 (PD-1) pathway in regulation of experimental autoimmune encephalomyelitis. J. Exp. Med. 198, 71–78 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ansari, M. J. et al. The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. J. Exp. Med. 198, 63–69 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sage, P. T., Francisco, L. M., Carman, C. V. & Sharpe, A. H. The receptor PD-1 controls follicular regulatory T cells in the lymph nodes and blood. Nat. Immunol. 14, 152–161 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Kristjansdottir, H. et al. Lower expression levels of the programmed death 1 receptor on CD4+CD25+ T cells and correlation with the PD-1.3A genotype in patients with systemic lupus erythematosus. Arthritis Rheum. 62, 1702–1711 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Bertsias, G. K. et al. Genetic, immunologic, and immunohistochemical analysis of the programmed death 1/programmed death ligand 1 pathway in human systemic lupus erythematosus. Arthritis Rheum. 60, 207–218 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Shi, H. et al. Elevated serum autoantibodies against co-inhibitory PD-1 facilitate T cell proliferation and correlate with disease activity in new-onset systemic lupus erythematosus patients. Arthritis Res. Ther. 19, 52 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Jiao, Q. et al. Upregulated PD-1 expression is associated with the development of systemic lupus erythematosus, but not the PD-1.1 allele of the PDCD1 gene. Int J. Genomics 2014, 950903 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270, 985–988 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Tivol, E. A. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3, 541–547 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Stohl, W. et al. Global T cell dysregulation in non-autoimmune-prone mice promotes rapid development of BAFF-independent, systemic lupus erythematosus-like autoimmunity. J. Immunol. 181, 833–841 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Barreto, M. et al. Evidence for CTLA4 as a susceptibility gene for systemic lupus erythematosus. Eur. J. Hum. Genet. 12, 620–626 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Ahmed, S. et al. Association of CTLA-4 but not CD28 gene polymorphisms with systemic lupus erythematosus in the Japanese population. Rheumatology 40, 662–667 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Hudson, L. L., Rocca, K., Song, Y. W. & Pandey, J. P. CTLA-4 gene polymorphisms in systemic lupus erythematosus: a highly significant association with a determinant in the promoter region. Hum. Genet. 111, 452–455 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Jury, E. C. et al. Abnormal CTLA-4 function in T cells from patients with systemic lupus erythematosus. Eur. J. Immunol. 40, 569–578 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Dahal, L. N. et al. Immunoregulatory soluble CTLA-4 modifies effector T-cell responses in systemic lupus erythematosus. Arthritis Res. Ther. 18, 180 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Merrill, J. T. et al. The efficacy and safety of abatacept in patients with non-life-threatening manifestations of systemic lupus erythematosus: results of a twelve-month, multicenter, exploratory, phase IIb, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 62, 3077–3087 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Furie, R. et al. Efficacy and safety of abatacept in lupus nephritis: a twelve-month, randomized, double-blind study. Arthritis Rheumatol. 66, 379–389 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Oster, C. et al. BTLA expression on Th1, Th2 and Th17 effector T-cells of patients with systemic lupus erythematosus is associated with active disease. Int. J. Mol. Sci. 20, https://doi.org/10.3390/ijms20184505 (2019).

  58. Sawaf, M. et al. Defective BTLA functionality is rescued by restoring lipid metabolism in lupus CD4+ T cells. JCI Insight 3, https://doi.org/10.1172/jci.insight.99711 (2018).

  59. Vendel, A. C. et al. B and T lymphocyte attenuator regulates B cell receptor signaling by targeting Syk and BLNK. J. Immunol. 182, 1509–1517 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Otsuki, N., Kamimura, Y., Hashiguchi, M. & Azuma, M. Expression and function of the B and T lymphocyte attenuator (BTLA/CD272) on human T cells. Biochem. Biophys. Res. Commun. 344, 1121–1127 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Lauzurica, P. et al. Phenotypic and functional characteristics of hematopoietic cell lineages in CD69-deficient mice. Blood 95, 2312–2320 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Sanchez-Diaz, R. et al. Thymus-derived regulatory T cell development is regulated by C-type lectin-mediated BIC/MicroRNA 155 expression. Mol. Cell. Biol. 37, https://doi.org/10.1128/MCB.00341-16 (2017).

  63. Cortes, J. R. et al. Maintenance of immune tolerance by Foxp3+ regulatory T cells requires CD69 expression. J. Autoimmun. 55, 51–62 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Radulovic, K. et al. CD69 regulates type I IFN-induced tolerogenic signals to mucosal CD4 T cells that attenuate their colitogenic potential. J. Immunol. 188, 2001–2013 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Yu, L. et al. CD69 enhances immunosuppressive function of regulatory T-cells and attenuates colitis by prompting IL-10 production. Cell Death Dis. 9, 905 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Ishikawa, S. et al. A subset of CD4+ T cells expressing early activation antigen CD69 in murine lupus: possible abnormal regulatory role for cytokine imbalance. J. Immunol. 161, 1267–1273 (1998).

    CAS  PubMed  Google Scholar 

  67. Peixoto, T. V. et al. CD4(+)CD69(+) T cells and CD4(+)CD25(+)FoxP3(+) Treg cells imbalance in peripheral blood, spleen and peritoneal lavage from pristane-induced systemic lupus erythematosus (SLE) mice. Adv. Rheumatol. 59, 30 (2019).

    Article  PubMed  Google Scholar 

  68. Su, C. C., Shau, W. Y., Wang, C. R., Chuang, C. Y. & Chen, C. Y. CD69 to CD3 ratio of peripheral blood mononuclear cells as a marker to monitor systemic lupus erythematosus disease activity. Lupus 6, 449–454 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Portales-Perez, D., Gonzalez-Amaro, R., Abud-Mendoza, C. & Sanchez-Armass, S. Abnormalities in CD69 expression, cytosolic pH and Ca2+ during activation of lymphocytes from patients with systemic lupus erythematosus. Lupus 6, 48–56 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Vitales-Noyola, M. et al. Patients with systemic lupus erythematosus show increased levels and defective function of CD69(+) T regulatory cells. Mediators Inflamm. 2017, 2513829 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Han, Y., Guo, Q., Zhang, M., Chen, Z. & Cao, X. CD69+ CD4+ CD25- T cells, a new subset of regulatory T cells, suppress T cell proliferation through membrane-bound TGF-beta 1. J. Immunol. 182, 111–120 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Crispin, J. C., Martinez, A., de Pablo, P., Velasquillo, C. & Alcocer-Varela, J. Participation of the CD69 antigen in the T-cell activation process of patients with systemic lupus erythematosus. Scand. J. Immunol. 48, 196–200 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Vitales-Noyola, M. et al. Quantitative and functional analysis of CD69(+) NKG2D(+) T regulatory cells in healthy subjects. Hum. Immunol. 76, 511–518 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Rodriguez-Munoz, A. et al. Levels of regulatory T cells CD69(+)NKG2D(+)IL-10(+) are increased in patients with autoimmune thyroid disorders. Endocrine 51, 478–489 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Vitales-Noyola, M. et al. Quantitative and functional analysis of CD69(+) T regulatory lymphocytes in patients with periodontal disease. J. Oral. Pathol. Med. 46, 549–557 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Tsujimura, S., Adachi, T., Saito, K. & Tanaka, Y. Role of P-glycoprotein on CD69(+)CD4(+) cells in the pathogenesis of proliferative lupus nephritis and non-responsiveness to immunosuppressive therapy. RMD Open 3, e000423 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  77. El Khatib, M. M. et al. beta-Cell-targeted blockage of PD1 and CTLA4 pathways prevents development of autoimmune diabetes and acute allogeneic islets rejection. Gene Ther. 22, 430–438 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li, R. et al. PD-L1-driven tolerance protects neurogenin3-induced islet neogenesis to reverse established type 1 diabetes in NOD mice. Diabetes 64, 529–540 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Sun, P. et al. Unlike PD-L1, PD-1 is downregulated on partial immune cells in type 2 diabetes. J. Diabetes Res. 2019, 5035261 (2019).

    PubMed  PubMed Central  Google Scholar 

  80. Colli, M. L. et al. PDL1 is expressed in the islets of people with type 1 diabetes and is up-regulated by interferons-alpha and-gamma via IRF1 induction. EBioMedicine 36, 367–375 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Osum, K. C. et al. Interferon-gamma drives programmed death-ligand 1 expression on islet beta cells to limit T cell function during autoimmune diabetes. Sci. Rep. 8, 8295 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Lenschow, D. J. et al. Differential effects of anti-B7-1 and anti-B7-2 monoclonal antibody treatment on the development of diabetes in the nonobese diabetic mouse. J. Exp. Med. 181, 1145–1155 (1995).

    Article  CAS  PubMed  Google Scholar 

  83. Truong, W. et al. BTLA targeting modulates lymphocyte phenotype, function, and numbers and attenuates disease in nonobese diabetic mice. J. Leukoc. Biol. 86, 41–51 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Bekiaris, V., Sedy, J. R., Macauley, M. G., Rhode-Kurnow, A. & Ware, C. F. The inhibitory receptor BTLA controls gammadelta T cell homeostasis and inflammatory responses. Immunity 39, 1082–1094 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bettini, M. et al. Cutting edge: accelerated autoimmune diabetes in the absence of LAG-3. J. Immunol. 187, 3493–3498 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Okazaki, T. et al. PD-1 and LAG-3 inhibitory co-receptors act synergistically to prevent autoimmunity in mice. J. Exp. Med. 208, 395–407 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang, Q. et al. LAG3 limits regulatory T cell proliferation and function in autoimmune diabetes. Sci. Immunol. 2, https://doi.org/10.1126/sciimmunol.aah4569 (2017).

  88. Fuhrman, C. A. et al. Divergent phenotypes of human regulatory T cells expressing the receptors TIGIT and CD226. J. Immunol. 195, 145–155 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Diarte-Anazco, E. M. G. et al. Novel insights into the role of HDL-associated sphingosine-1-phosphate in cardiometabolic diseases. Int. J. Mol. Sci. 20, https://doi.org/10.3390/ijms20246273 (2019).

  90. Srinivasan, S. et al. Sphingosine-1-phosphate reduces CD4+ T-cell activation in type 1 diabetes through regulation of hypoxia-inducible factor short isoform I.1 and CD69. Diabetes 57, 484–493 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Klocke, K., Sakaguchi, S., Holmdahl, R. & Wing, K. Induction of autoimmune disease by deletion of CTLA-4 in mice in adulthood. Proc. Natl Acad. Sci. USA 113, E2383–E2392 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Verma, N., Burns, S. O., Walker, L. S. K. & Sansom, D. M. Immune deficiency and autoimmunity in patients with CTLA-4 (CD152) mutations. Clin. Exp. Immunol. 190, 1–7 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kuehn, H. S. et al. Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science 345, 1623–1627 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lin, J. et al. TNFalpha blockade in human diseases: an overview of efficacy and safety. Clin. Immunol. 126, 13–30 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Genant, H. K. et al. Abatacept inhibits progression of structural damage in rheumatoid arthritis: results from the long-term extension of the AIM trial. Ann. Rheum. Dis. 67, 1084–1089 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Ruperto, N. et al. Abatacept in children with juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled withdrawal trial. Lancet 372, 383–391 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Larsen, C. P. et al. Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am. J. Transpl. 5, 443–453 (2005).

    Article  CAS  Google Scholar 

  98. Oki, M. et al. A functional polymorphism in B and T lymphocyte attenuator is associated with susceptibility to rheumatoid arthritis. Clin. Dev. Immunol. 2011, 305656 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Yang, B. et al. The expression of BTLA was increased and the expression of HVEM and LIGHT were decreased in the T cells of patients with rheumatoid arthritis [corrected]. PLoS ONE 11, e0155345 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Nakachi, S. et al. Interleukin-10-producing LAG3(+) regulatory T cells are associated with disease activity and abatacept treatment in rheumatoid arthritis. Arthritis Res. Ther. 19, 97 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Chen, S. Y., Hsu, W. T., Chen, Y. L., Chien, C. H. & Chiang, B. L. Lymphocyte-activation gene 3(+) (LAG3(+)) forkhead box protein 3(-) (FOXP3(-)) regulatory T cells induced by B cells alleviates joint inflammation in collagen-induced arthritis. J. Autoimmun. 68, 75–85 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Lee, J. et al. Expression of human TIM-3 and its correlation with disease activity in rheumatoid arthritis. Scand. J. Rheumatol. 40, 334–340 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Koohini, Z. et al. Analysis of PD-1 and Tim-3 expression on CD4(+) T cells of patients with rheumatoid arthritis; negative association with DAS28. Clin. Rheumatol. 37, 2063–2071 (2018).

    Article  PubMed  Google Scholar 

  104. Zhao, W. et al. TIGIT overexpression diminishes the function of CD4 T cells and ameliorates the severity of rheumatoid arthritis in mouse models. Exp. Cell Res. 340, 132–138 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Fasth, A. E., Bjorkstrom, N. K., Anthoni, M., Malmberg, K. J. & Malmstrom, V. Activating NK-cell receptors co-stimulate CD4(+)CD28(−) T cells in patients with rheumatoid arthritis. Eur. J. Immunol. 40, 378–387 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Ceeraz, S. et al. VISTA deficiency attenuates antibody-induced arthritis and alters macrophage gene expression in response to simulated immune complexes. Arthritis Res. Ther. 19, 270 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Verwilghen, J., Corrigall, V., Pope, R. M., Rodrigues, R. & Panayi, G. S. Expression and function of CD5 and CD28 in patients with rheumatoid arthritis. Immunology 80, 96–102 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Martin, P. et al. The leukocyte activation antigen CD69 limits allergic asthma and skin contact hypersensitivity. J. Allergy Clin. Immunol. 126, 355–365, 365 e351–e353 (2010).

    Article  CAS  PubMed  Google Scholar 

  109. Cruz-Adalia, A. et al. CD69 limits the severity of cardiomyopathy after autoimmune myocarditis. Circulation 122, 1396–1404 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Sancho, D. et al. CD69 downregulates autoimmune reactivity through active transforming growth factor-beta production in collagen-induced arthritis. J. Clin. Invest. 112, 872–882 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hernandez-Garcia, C., Fernandez-Gutierrez, B., Morado, I. C., Banares, A. A. & Jover, J. A. The CD69 activation pathway in rheumatoid arthritis synovial fluid T cells. Arthritis Rheum. 39, 1277–1286 (1996).

    Article  CAS  PubMed  Google Scholar 

  112. Iannone, F., Corrigal, V. M. & Panayi, G. S. CD69 on synovial T cells in rheumatoid arthritis correlates with disease activity. Br. J. Rheumatol. 35, 397 (1996).

    Article  CAS  PubMed  Google Scholar 

  113. Steinbach, K., Vincenti, I., Merkler, D. & Resident-Memory, T. Cells in tissue-restricted immune responses: for better or worse? Front. Immunol. 9, 2827 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Blanton, R. M., Carrillo-Salinas, F. J. & Alcaide, P. T-cell recruitment to the heart: friendly guests or unwelcome visitors? Am. J. Physiol. Heart Circ. Physiol. 317, H124–H140 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Munro, J. M., van der Walt, J. D., Munro, C. S., Chalmers, J. A. & Cox, E. L. An immunohistochemical analysis of human aortic fatty streaks. Hum. Pathol. 18, 375–380 (1987).

    Article  CAS  PubMed  Google Scholar 

  116. Ridker, P. M. et al. Antiinflammatory therapy with Canakinumab for atherosclerotic disease. N. Engl. J. Med 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  117. Palinski, W. Immunomodulation: a new role for statins? Nat. Med. 6, 1311–1312 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Mach, F. Statins as immunomodulatory agents. Circulation 109, II15–II17 (2004).

    Article  PubMed  CAS  Google Scholar 

  119. Tse, K., Tse, H., Sidney, J., Sette, A. & Ley, K. T cells in atherosclerosis. Int Immunol. 25, 615–622 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. van Duijn, J., Kuiper, J. & Slutter, B. The many faces of CD8+ T cells in atherosclerosis. Curr. Opin. Lipido. 29, 411–416 (2018).

    Article  CAS  Google Scholar 

  121. Qiu, M. K. et al. PD-1 and Tim-3 pathways regulate CD8+ T cells function in atherosclerosis. PLoS ONE 10, e0128523 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Li, S. H., Chen, W. J., Yan, M., Shu, Y. W. & Liao, Y. H. Expression of coinhibitory PD-L1 on CD4(+)CD25(+)FOXP3(+) regulatory T cells is elevated in patients with acute coronary syndrome. Coron. Artery Dis. 26, 598–603 (2015).

    Article  PubMed  Google Scholar 

  123. Lee, J. et al. Contributions of PD-1/PD-L1 pathway to interactions of myeloid DCs with T cells in atherosclerosis. J. Mol. Cell Cardiol. 46, 169–176 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Foks, A. C. et al. T-cell immunoglobulin and mucin domain 3 acts as a negative regulator of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 33, 2558–2565 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Ma, K. et al. CTLA4-IgG ameliorates homocysteine-accelerated atherosclerosis by inhibiting T-cell overactivation in apoE(−/−) mice. Cardiovasc. Res. 97, 349–359 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Ewing, M. M. et al. T-cell co-stimulation by CD28-CD80/86 and its negative regulator CTLA-4 strongly influence accelerated atherosclerosis development. Int. J. Cardiol. 168, 1965–1974 (2013).

    Article  CAS  PubMed  Google Scholar 

  127. Matsumoto, T. et al. Overexpression of cytotoxic T-lymphocyte-associated antigen-4 prevents atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 36, 1141–1151 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. Golden, D. et al. Lymphocyte activation gene 3 and coronary artery disease. JCI Insight 1, e88628 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Douna, H. et al. B- and T-lymphocyte attenuator stimulation protects against atherosclerosis by regulating follicular B cells. Cardiovasc. Res. 116, 295–305 (2020).

    CAS  PubMed  Google Scholar 

  130. Foks, A. C. et al. Agonistic anti-TIGIT treatment inhibits T cell responses in LDLr deficient mice without affecting atherosclerotic lesion development. PLoS ONE 8, e83134 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Gao, J. et al. VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat. Med. 23, 551–555 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Decano, J. L. & Aikawa, M. Dynamic macrophages: understanding mechanisms of activation as guide to therapy for atherosclerotic vascular disease. Front. Cardiovasc. Med. 5, 97 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Roselaar, S. E., Kakkanathu, P. X. & Daugherty, A. Lymphocyte populations in atherosclerotic lesions of apoE −/− and LDL receptor −/− mice. Decreasing density with disease progression. Arterioscler. Thromb. Vasc. Biol. 16, 1013–1018 (1996).

    Article  CAS  PubMed  Google Scholar 

  134. Sekiya, T. et al. Nr4a receptors are essential for thymic regulatory T cell development and immune homeostasis. Nat. Immunol. 14, 230–237 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Lim, H. et al. Proatherogenic conditions promote autoimmune T helper 17 cell responses in vivo. Immunity 40, 153–165 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Fernandez-Friera, L. et al. Prevalence, vascular distribution, and multiterritorial extent of subclinical atherosclerosis in a middle-aged cohort: The PESA (Progression of Early Subclinical Atherosclerosis) Study. Circulation 131, 2104–2113 (2015).

    Article  PubMed  Google Scholar 

  137. Swirski, F. K. & Nahrendorf, M. Cardioimmunology: the immune system in cardiac homeostasis and disease. Nat. Rev. Immunol. 18, 733–744 (2018).

    Article  CAS  PubMed  Google Scholar 

  138. Lutgens, E. & Seijkens, T. T. P. Cancer patients receiving immune checkpoint inhibitor therapy are at an increased risk for atherosclerotic cardiovascular disease. J. Immunother. Cancer 8, https://doi.org/10.1136/jitc-2019-000300 (2020).

  139. Ramos-Casals, M. et al. Immune-related adverse events of checkpoint inhibitors. Nat. Rev. Dis. Prim. 6, 38 (2020).

    Article  PubMed  Google Scholar 

  140. Zaha, V. G., Meijers, W. C. & Moslehi, J. Cardio-immuno-oncology. Circulation 141, 87–89 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Bar, J. et al. Acute vascular events as a possibly related adverse event of immunotherapy: a single-institute retrospective study. Eur. J. Cancer 120, 122–131 (2019).

    Article  CAS  PubMed  Google Scholar 

  142. Newman, J. L. & Stone, J. R. Immune checkpoint inhibition alters the inflammatory cell composition of human coronary artery atherosclerosis. Cardiovasc. Pathol. 43, 107148 (2019).

    Article  CAS  PubMed  Google Scholar 

  143. Bennet, A. M., Alarcon-Riquelme, M., Wiman, B., de Faire, U. & Prokunina-Olsson, L. Decreased risk for myocardial infarction and lower tumor necrosis factor-alpha levels in carriers of variants of the PDCD1 gene. Hum. Immunol. 67, 700–705 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. Yip, H. K. et al. Cytotoxic T lymphocyte antigen 4 gene polymorphism associated with ST-segment elevation acute myocardial infarction. Circ. J. 71, 1213–1218 (2007).

    Article  CAS  PubMed  Google Scholar 

  145. Yin, X. et al. Protein biomarkers of new-onset cardiovascular disease: prospective study from the systems approach to biomarker research in cardiovascular disease initiative. Arterioscler. Thromb. Vasc. Biol. 34, 939–945 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Forteza, M. J. et al. Programmed death-1 (PD-1): a novel mechanism for understanding the acute immune deregulation in ST-segment elevation myocardial infarction. Int J. Cardiol. 177, 8–10 (2014).

    Article  PubMed  Google Scholar 

  147. Pasqui, A. L. et al. T cell activation and enhanced apoptosis in non-ST elevation myocardial infarction. Clin. Exp. Med. 3, 37–44 (2003).

    Article  CAS  PubMed  Google Scholar 

  148. Carvalheiro, T. et al. Phenotypic and functional alterations on inflammatory peripheral blood cells after acute myocardial infarction. J. Cardiovasc. Transl. Res. 5, 309–320 (2012).

    Article  PubMed  Google Scholar 

  149. Hosono, M. et al. Increased expression of T cell activation markers (CD25, CD26, CD40L and CD69) in atherectomy specimens of patients with unstable angina and acute myocardial infarction. Atherosclerosis 168, 73–80 (2003).

    Article  CAS  PubMed  Google Scholar 

  150. Bruestle, K., Hackner, K., Kreye, G. & Heidecker, B. Autoimmunity in acute myocarditis: how immunopathogenesis steers new directions for diagnosis and treatment. Curr. Cardiol. Rep. 22, 28 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Lv, H. et al. Impaired thymic tolerance to alpha-myosin directs autoimmunity to the heart in mice and humans. J. Clin. Invest. 121, 1561–1573 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Grabie, N., Lichtman, A. H. & Padera, R. T cell checkpoint regulators in the heart. Cardiovasc. Res. 115, 869–877 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Johnson, D. B. et al. Fulminant myocarditis with Combination Immune Checkpoint Blockade. N. Engl. J. Med 375, 1749–1755 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Mahmood, S. S. et al. Myocarditis in patients treated with immune checkpoint inhibitors. J. Am. Coll. Cardiol. 71, 1755–1764 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Shrestha, K. P. & Carrera, A. E. Hair trace elements and mental retardation among children. Arch. Environ. Health 43, 396–398 (1988).

    Article  CAS  PubMed  Google Scholar 

  156. Moslehi, J. J., Salem, J. E., Sosman, J. A., Lebrun-Vignes, B. & Johnson, D. B. Increased reporting of fatal immune checkpoint inhibitor-associated myocarditis. Lancet 391, 933 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Escudier, M. et al. Clinical features, management, and outcomes of immune checkpoint inhibitor-related cardiotoxicity. Circulation 136, 2085–2087 (2017).

    Article  PubMed  Google Scholar 

  158. Nishimura, H. et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291, 319–322 (2001).

    Article  CAS  PubMed  Google Scholar 

  159. Tarrio, M. L., Grabie, N., Bu, D. X., Sharpe, A. H. & Lichtman, A. H. PD-1 protects against inflammation and myocyte damage in T cell-mediated myocarditis. J. Immunol. 188, 4876–4884 (2012).

    Article  CAS  PubMed  Google Scholar 

  160. Tivol, E. A. et al. CTLA4Ig prevents lymphoproliferation and fatal multiorgan tissue destruction in CTLA-4-deficient mice. J. Immunol. 158, 5091–5094 (1997).

    CAS  PubMed  Google Scholar 

  161. Ji, C. et al. Myocarditis in cynomolgus monkeys following treatment with immune checkpoint inhibitors. Clin. Cancer Res. 25, 4735–4748 (2019).

    Article  CAS  PubMed  Google Scholar 

  162. Freeman, G. J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192, 1027–1034 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Rodig, N. et al. Endothelial expression of PD-L1 and PD-L2 down-regulates CD8+ T cell activation and cytolysis. Eur. J. Immunol. 33, 3117–3126 (2003).

    Article  CAS  PubMed  Google Scholar 

  164. Koelzer, V. H. et al. Systemic inflammation in a melanoma patient treated with immune checkpoint inhibitors-an autopsy study. J. Immunother. Cancer 4, 13 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Frisancho-Kiss, S. et al. Cutting edge: T cell Ig mucin-3 reduces inflammatory heart disease by increasing CTLA-4 during innate immunity. J. Immunol. 176, 6411–6415 (2006).

    Article  CAS  PubMed  Google Scholar 

  166. Frisancho-Kiss, S. et al. Cutting edge: cross-regulation by TLR4 and T cell Ig mucin-3 determines sex differences in inflammatory heart disease. J. Immunol. 178, 6710–6714 (2007).

    Article  CAS  PubMed  Google Scholar 

  167. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Pennock, N. D. et al. T cell responses: naive to memory and everything in between. Adv. Physiol. Educ. 37, 273–283 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Teng, M. W., Galon, J., Fridman, W. H. & Smyth, M. J. From mice to humans: developments in cancer immunoediting. J. Clin. Invest. 125, 3338–3346 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Otsuka, A. et al. Hedgehog pathway inhibitors promote adaptive immune responses in basal cell carcinoma. Clin. Cancer Res. 21, 1289–1297 (2015).

    Article  CAS  PubMed  Google Scholar 

  171. Vinay, D. S. et al. Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin. Cancer Biol. 35(Suppl), S185–S198 (2015).

    Article  PubMed  CAS  Google Scholar 

  172. Sarvaria, A., Madrigal, J. A. & Saudemont, A. B cell regulation in cancer and anti-tumor immunity. Cell Mol. Immunol. 14, 662–674 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Day, C. L. et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443, 350–354 (2006).

    Article  CAS  PubMed  Google Scholar 

  174. Baitsch, L. et al. Exhaustion of tumor-specific CD8(+) T cells in metastases from melanoma patients. J. Clin. Invest. 121, 2350–2360 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Wherry, E. J. T cell exhaustion. Nat. Immunol. 12, 492–499 (2011).

    Article  CAS  PubMed  Google Scholar 

  176. Speiser, D. E. et al. T cell differentiation in chronic infection and cancer: functional adaptation or exhaustion? Nat. Rev. Immunol. 14, 768–774 (2014).

    Article  CAS  PubMed  Google Scholar 

  177. Peggs, K. S., Quezada, S. A., Chambers, C. A., Korman, A. J. & Allison, J. P. Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J. Exp. Med. 206, 1717–1725 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Robert, C. et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med. 364, 2517–2526 (2011).

    Article  CAS  PubMed  Google Scholar 

  180. Wolchok, J. D. et al. Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet Oncol. 11, 155–164 (2010).

    Article  CAS  PubMed  Google Scholar 

  181. Eggermont, A. M. et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol. 16, 522–530 (2015).

    Article  CAS  PubMed  Google Scholar 

  182. Yang, J. C. et al. Ipilimumab (anti-CTLA4 antibody) causes regression of metastatic renal cell cancer associated with enteritis and hypophysitis. J. Immunother. 30, 825–830 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Ansell, S. M. et al. Phase I study of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with relapsed and refractory B-cell non-Hodgkin lymphoma. Clin. Cancer Res. 15, 6446–6453 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Kwon, E. D. et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 15, 700–712 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Ribas, A. et al. Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J. Clin. Oncol. 31, 616–622 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Chung, K. Y. et al. Phase II study of the anti-cytotoxic T-lymphocyte-associated antigen 4 monoclonal antibody, tremelimumab, in patients with refractory metastatic colorectal cancer. J. Clin. Oncol. 28, 3485–3490 (2010).

    Article  CAS  PubMed  Google Scholar 

  187. Sangro, B. et al. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J. Hepatol. 59, 81–88 (2013).

    Article  CAS  PubMed  Google Scholar 

  188. Calabro, L. et al. Tremelimumab for patients with chemotherapy-resistant advanced malignant mesothelioma: an open-label, single-arm, phase 2 trial. Lancet Oncol. 14, 1104–1111 (2013).

    Article  CAS  PubMed  Google Scholar 

  189. Dong, H. et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat. Med. 8, 793–800 (2002).

    Article  CAS  PubMed  Google Scholar 

  190. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Page, D. B., Postow, M. A., Callahan, M. K., Allison, J. P. & Wolchok, J. D. Immune modulation in cancer with antibodies. Annu. Rev. Med. 65, 185–202 (2014).

    Article  CAS  PubMed  Google Scholar 

  192. Lipson, E. J. et al. Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody. Clin. Cancer Res. 19, 462–468 (2013).

    Article  CAS  PubMed  Google Scholar 

  193. Mahoney, K. M., Freeman, G. J. & McDermott, D. F. The next immune-checkpoint inhibitors: PD-1/PD-L1 blockade in melanoma. Clin. Ther. 37, 764–782 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Berger, R. et al. Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin. Cancer Res. 14, 3044–3051 (2008).

    Article  CAS  PubMed  Google Scholar 

  195. Wolchok, J. D. et al. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 369, 122–133 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Lynch, T. J. et al. Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J. Clin. Oncol. 30, 2046–2054 (2012).

    Article  CAS  PubMed  Google Scholar 

  197. Horinouchi, H. et al. Phase I study of ipilimumab in phased combination with paclitaxel and carboplatin in Japanese patients with non-small-cell lung cancer. Invest. N. Drugs 33, 881–889 (2015).

    Article  CAS  Google Scholar 

  198. Arriola, E. et al. Outcome and biomarker analysis from a multicenter phase 2 study of ipilimumab in combination with carboplatin and etoposide as first-line therapy for extensive-stage SCLC. J. Thorac. Oncol. 11, 1511–1521 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Hersh, E. M. et al. A phase II multicenter study of ipilimumab with or without dacarbazine in chemotherapy-naive patients with advanced melanoma. Invest N. Drugs 29, 489–498 (2011).

    Article  CAS  Google Scholar 

  200. Chi, M. & Dudek, A. Z. Vaccine therapy for metastatic melanoma: systematic review and meta-analysis of clinical trials. Melanoma Res. 21, 165–174 (2011).

    Article  CAS  PubMed  Google Scholar 

  201. Bernatchez, C., Radvanyi, L. G. & Hwu, P. Advances in the treatment of metastatic melanoma: adoptive T-cell therapy. Semin. Oncol. 39, 215–226 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Boni, A. et al. Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res. 70, 5213–5219 (2010).

    Article  CAS  PubMed  Google Scholar 

  203. Slovin, S. F. et al. Ipilimumab alone or in combination with radiotherapy in metastatic castration-resistant prostate cancer: results from an open-label, multicenter phase I/II study. Ann. Oncol. 24, 1813–1821 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Wilmott, J. S. et al. Selective BRAF inhibitors induce marked T-cell infiltration into human metastatic melanoma. Clin. Cancer Res. 18, 1386–1394 (2012).

    Article  CAS  PubMed  Google Scholar 

  205. Ribas, A., Hodi, F. S., Callahan, M., Konto, C. & Wolchok, J. Hepatotoxicity with combination of vemurafenib and ipilimumab. N. Engl. J. Med. 368, 1365–1366 (2013).

    Article  CAS  PubMed  Google Scholar 

  206. Puhr, H. C. & Ilhan-Mutlu, A. New emerging targets in cancer immunotherapy: the role of LAG3. ESMO Open 4, e000482 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Tagliamento, M., Bironzo, P. & Novello, S. New emerging targets in cancer immunotherapy: the role of VISTA. ESMO Open 4, https://doi.org/10.1136/esmoopen-2020-000683 (2020).

  208. Johnston, R. L., Lutzky, J., Chodhry, A. & Barkin, J. S. Cytotoxic T-lymphocyte-associated antigen 4 antibody-induced colitis and its management with infliximab. Dig. Dis. Sci. 54, 2538–2540 (2009).

    Article  CAS  PubMed  Google Scholar 

  209. Abdel-Rahman, O. & Fouad, M. A network meta-analysis of the risk of immune-related renal toxicity in cancer patients treated with immune checkpoint inhibitors. Immunotherapy 8, 665–674 (2016).

    Article  CAS  PubMed  Google Scholar 

  210. Nonomura, Y. et al. ADAMTSL5 is upregulated in melanoma tissues in patients with idiopathic psoriasis vulgaris induced by nivolumab. J. Eur. Acad. Dermatol. Venereol. 31, e100–e101 (2017).

    Article  CAS  PubMed  Google Scholar 

  211. Chae, Y. K. et al. A case of pembrolizumab-induced type-1 diabetes mellitus and discussion of immune checkpoint inhibitor-induced type 1 diabetes. Cancer Immunol. Immunother. 66, 25–32 (2017).

    Article  CAS  PubMed  Google Scholar 

  212. Tarhini, A. Immune-mediated adverse events associated with ipilimumab ctla-4 blockade therapy: the underlying mechanisms and clinical management. Science (Cairo) 2013, 857519 (2013).

    Google Scholar 

  213. Fecher, L. A., Agarwala, S. S., Hodi, F. S. & Weber, J. S. Ipilimumab and its toxicities: a multidisciplinary approach. Oncologist 18, 733–743 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Weber, J. S. et al. Patterns of onset and resolution of immune-related adverse events of special interest with ipilimumab: detailed safety analysis from a phase 3 trial in patients with advanced melanoma. Cancer 119, 1675–1682 (2013).

    Article  CAS  PubMed  Google Scholar 

  215. Marthey, L. et al. Cancer Immunotherapy with anti-CTLA-4 monoclonal antibodies induces an inflammatory bowel disease. J. Crohns Colitis 10, 395–401 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Kim, K. W. et al. Ipilimumab associated hepatitis: imaging and clinicopathologic findings. Invest N. Drugs 31, 1071–1077 (2013).

    Article  CAS  Google Scholar 

  217. Dillard, T., Yedinak, C. G., Alumkal, J. & Fleseriu, M. Anti-CTLA-4 antibody therapy associated autoimmune hypophysitis: serious immune related adverse events across a spectrum of cancer subtypes. Pituitary 13, 29–38 (2010).

    Article  CAS  PubMed  Google Scholar 

  218. Bertrand, A., Kostine, M., Barnetche, T., Truchetet, M. E. & Schaeverbeke, T. Immune related adverse events associated with anti-CTLA-4 antibodies: systematic review and meta-analysis. BMC Med. 13, 211 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Naidoo, J. et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann. Oncol. 26, 2375–2391 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Qin, W. et al. The diverse gunction of PD-1/PD-L pathway beyond vancer. Front. Immunol. 10, 2298 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Stohl, W., Yu, N., Chalmers, S. A., Putterman, C. & Jacob, C. O. Constitutive reduction in the checkpoint inhibitor, CTLA-4, does not accelerate SLE in NZM 2328 mice. Lupus Sci. Med. 6, e000313 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Fadel, F., El Karoui, K. & Knebelmann, B. Anti-CTLA4 antibody-induced lupus nephritis. N. Engl. J. Med. 361, 211–212 (2009).

    Article  CAS  PubMed  Google Scholar 

  223. Richter, M. D. et al. Brief Report: Cancer immunotherapy in patients with preexisting rheumatic disease: The Mayo Clinic experience. Arthritis Rheumatol. 70, 356–360 (2018).

    Article  PubMed  Google Scholar 

  224. Simons, K. H. et al. T cell co-stimulation and co-inhibition in cardiovascular disease: a double-edged sword. Nat. Rev. Cardiol. 16, 325–343 (2019).

    Article  PubMed  Google Scholar 

  225. Mensah, G. A., Roth, G. A. & Fuster, V. The global burden of cardiovascular diseases and risk factors: 2020 and beyond. J. Am. Coll. Cardiol. 74, 2529–2532 (2019).

    Article  PubMed  Google Scholar 

  226. Esplugues, E. et al. Enhanced antitumor immunity in mice deficient in CD69. J. Exp. Med 197, 1093–1106 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Cibrian, D. & Sanchez-Madrid, F. CD69: from activation marker to metabolic gatekeeper. Eur. J. Immunol. 47, 946–953 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Song, W., Das, M. & Chen, X. Nanotherapeutics for immuno-oncology: a crossroad for new paradigms. Trends Cancer 6, 288–298 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Grosser, R., Cherkassky, L., Chintala, N. & Adusumilli, P. S. Combination immunotherapy with CAR T cells and checkpoint blockade for the treatment of solid tumors. Cancer Cell 36, 471–482 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Gianchecchi, E. & Fierabracci, A. Inhibitory receptors and pathways of lymphocytes: the role of PD-1 in Treg development and their involvement in autoimmunity onset and cancer progression. Front. Immunol. 9, 2374 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Michel, L. et al. Patients with relapsing-remitting multiple sclerosis have normal Treg function when cells expressing IL-7 receptor alpha-chain are excluded from the analysis. J. Clin. Invest. 118, 3411–3419 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Zelle-Rieser, C. et al. T cells in multiple myeloma display features of exhaustion and senescence at the tumor site. J. Hematol. Oncol. 9, 116 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  233. Heinzerling, L. et al. Cardiotoxicity associated with CTLA4 and PD1 blocking immunotherapy. J. Immunother. Cancer 4, 50 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Zhang, Z. et al. Two genes encoding immune-regulatory molecules (LAG3 and IL7R) confer susceptibility to multiple sclerosis. Genes Immun. 6, 145–152 (2005).

    Article  CAS  PubMed  Google Scholar 

  235. Pallikkuth, S. et al. Cardiac morbidity in HIV infection is associated with checkpoint inhibitor LAG-3 on CD4 T cells. PLoS One 13, e0206256 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  236. Liberal, R. et al. The impaired immune regulation of autoimmune hepatitis is linked to a defective galectin-9/tim-3 pathway. Hepatology 56, 677–686 (2012).

    Article  CAS  PubMed  Google Scholar 

  237. Das, M., Zhu, C. & Kuchroo, V. K. Tim-3 and its role in regulating anti-tumor immunity. Immunol. Rev. 276, 97–111 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Japp, A. S. et al. Dysfunction of PSA-specific CD8+ T cells in prostate cancer patients correlates with CD38 and Tim-3 expression. Cancer Immunol. Immunother. 64, 1487–1494 (2015).

    Article  CAS  PubMed  Google Scholar 

  239. Agresta, L., Hoebe, K. H. N. & Janssen, E. M. The emerging role of CD244 signaling in immune cells of the tumor microenvironment. Front. Immunol. 9, 2809 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  240. Peng, J. & Xiang, Y. Value analysis of CD69 combined with EGR1 in the diagnosis of coronary heart disease. Exp. Ther. Med. 17, 2047–2052 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Wald, O. et al. CD4+CXCR4highCD69+ T cells accumulate in lung adenocarcinoma. J. Immunol. 177, 6983–6990 (2006).

    Article  CAS  PubMed  Google Scholar 

  242. Oja, A. E. et al. Functional heterogeneity of CD4(+) tumor-infiltrating lymphocytes with a resident memory phenotype in NSCLC. Front. Immunol. 9, 2654 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Yu, X., Zheng, Y., Mao, R., Su, Z. & Zhang, J. BTLA/HVEM signaling: milestones in research and role in chronic hepatitis B virus infection. Front. Immunol. 10, 617 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Burgueno-Bucio, E., Mier-Aguilar, C. A. & Soldevila, G. The multiple faces of CD5. J. Leukoc. Biol. 105, 891–904 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by competitive grants from the Ministerio de Ciencia, Innovación y Universidades, through the Carlos III Institute of Health-Fondo de Investigación Sanitaria (PI19/00545) to P.M.; CIBER Cardiovascular (Fondo de Investigación Sanitaria del Instituto de Salud Carlos III and cofunding by Fondo Europeo de Desarrollo Regional FEDER) to P.M.; and CAM (S2017/BMD-3671-INFLAMUNE-CM) from the Comunidad de Madrid to P.M. The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia e Innovación and the Pro CNIC Foundation and is a Severo Ochoa Center of Excellence (SEV-2015-0505). R.B.-D. is supported by the Formación de Profesorado Universitario (FPU16/02780) program of the Spanish Ministry of Education, Culture and Sports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilar Martín.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martín, P., Blanco-Domínguez, R. & Sánchez-Díaz, R. Novel human immunomodulatory T cell receptors and their double-edged potential in autoimmunity, cardiovascular disease and cancer. Cell Mol Immunol 18, 919–935 (2021). https://doi.org/10.1038/s41423-020-00586-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-020-00586-4

Keywords

This article is cited by

Search

Quick links