Skip to main content
Log in

A New Approach for Cu and Fe/FexB Production from Chalcopyrite by Molten Salt Electrolysis

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

In the present study, copper (Cu) and iron boride (FexB) were produced for the first time through molten salt electrolysis using chalcopyrite (CuFeS2) in an oxide-based borax electrolyte. Molten salt electrolysis was carried out at 1073 K and a current density of 600 mA/cm2 for 3600 s under galvanostatic conditions. Cu and Fe/FexB were deposited on the graphite crucible surface used as the cathode. The particles obtained as a result of electrolysis were examined by X-ray diffraction (XRD) and determined to contain Cu and Fe/FexB. The location and ratio of Cu and FexB in the particles were investigated by using EDS mapping, energy-dispersive spectroscopy (EDS), and X-ray spectroscopy (XRD); Cu and Fe/FexB were found to be present throughout the particles at different ratios. Cu and Fe/FexB were successfully separated from each other by selective leaching of copper in a 1 M NH3–H2O solution. The time-dependent dissolution behavior of Cu was investigated at pH 8, 298 K, 600 rpm stirring rate for 900–5400 s, and it was observed that the dissolution rate increased over time and all the copper had completely dissolved after 5400 s. After leaching particles were examined by XRD and SEM, it was revealed that Fe/FexB particles did not contain any Cu.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li Y, Kawashima N, Li J et al (2013) A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite. Adv Colloid Interface Sci 197–198:1–32. https://doi.org/10.1016/j.cis.2013.03.004

    Article  CAS  Google Scholar 

  2. Baba AA, Ayinla KI, Adekola FA et al (2012) A review on novel techniques for chalcopyrite ore processing. Int J Min Eng Miner Process 1:1–16. https://doi.org/10.5923/j.mining.20120101.01

    Article  Google Scholar 

  3. Schlesinger ME, King MJ, Sole KC, Davenport WG (2011) Direct-to-copper flash smelting. Extr Metall Copp. https://doi.org/10.1016/B978-0-08-096789-9.10010-1

    Article  Google Scholar 

  4. Ruiz MC, Montes KS, Padilla R (2011) Chalcopyrite leaching in sulfate-chloride media at ambient pressure. Hydrometallurgy 109:37–42. https://doi.org/10.1016/j.hydromet.2011.05.007

    Article  CAS  Google Scholar 

  5. Haver FP, Wong MM (1971) Recovery of copper, iron, and sulfur from chalcopyrite concentrate using a ferric chloride leach. J Met 23:25–29

    CAS  Google Scholar 

  6. Olvera OG, Rebolledo M, Asselin E (2016) Atmospheric ferric sulfate leaching of chalcopyrite: thermodynamics, kinetics and electrochemistry. Hydrometallurgy 165:148–158. https://doi.org/10.1016/j.hydromet.2015.09.017

    Article  CAS  Google Scholar 

  7. Turan MD (2019) Optimization of selective copper extraction from chalcopyrite concentrate in presence of ammonium persulfate and ammonium hydroxide. Int J Miner Metall Mater 26:946–952. https://doi.org/10.1007/s12613-019-1804-y

    Article  CAS  Google Scholar 

  8. Han B, Altansukh B, Haga K et al (2017) Leaching and kinetic study on pressure oxidation of chalcopyrite in H2SO4 solution and the effect of pyrite on chalcopyrite leaching. J Sustain Metall 3:528–542. https://doi.org/10.1007/s40831-017-0135-3

    Article  Google Scholar 

  9. Biegler T, Constable DC (1977) Continuous electrolytic reduction of a chalcopyrite slurry. J Appl Electrochem 7:175–179. https://doi.org/10.1007/BF00611040

    Article  CAS  Google Scholar 

  10. Habashi F (1997) Handbook of extractive metallurgy. Wiley-VCH, New York

    Google Scholar 

  11. Ge X, Wang X, Seetharaman S (2009) Copper extraction from copper ore by electro-reduction in molten CaCl2-NaCl. Electrochim Acta 54:4397–4402. https://doi.org/10.1016/j.electacta.2009.03.015

    Article  CAS  Google Scholar 

  12. Wang D, Lu C, Zou X et al (2018) Electrolysis of converter matte in molten CaCl2-NaCl. J Mater Sci Chem Eng 06:1–11. https://doi.org/10.4236/msce.2018.62001

    Article  CAS  Google Scholar 

  13. Xie H, Qu J, Ning Z et al (2018) Electrochemical co-desulfurization-deoxidation of low-grade nickel-copper matte in molten salts. J Electrochem Soc 165:E578–E583. https://doi.org/10.1149/2.1221811jes

    Article  CAS  Google Scholar 

  14. Tan M, He R, Yuan Y et al (2016) Electrochemical sulfur removal from chalcopyrite in molten NaCl-KCl. Electrochim Acta 213:148–154. https://doi.org/10.1016/j.electacta.2016.07.088

    Article  CAS  Google Scholar 

  15. Ge XL, Seetharaman S (2010) The salt extraction process—a novel route for metal extraction Part 2—Cu/Fe extraction from copper oxide and sulphides. Miner Process Extr Metall 119:93–100. https://doi.org/10.1179/174328510X498116

    Article  CAS  Google Scholar 

  16. Free M, Moats M, Robinson T et al (2012) Electrometallurgy—now and in the future. Electrometallurgy 2012:1–27

    Google Scholar 

  17. Vignes A (2013a) Molten salt electrolysis operations. In: Vignes A (ed) Extractive metallurgy 3. Wiley, Berlin, pp 266–291

    Google Scholar 

  18. Chen GZ (2013) Forming metal powders by electrolysis. In: Isaac C (ed) Advances in powder metallurgy: properties, processing and applications. Woodhead Publishing Limited, Sawston, pp 19–41

    Chapter  Google Scholar 

  19. Suzuki RO (2005) Calciothermic reduction of TiO2 and in situ electrolysis of CaO in the molten CaCl2. J Phys Chem Solids 66(2):461–465

    Article  CAS  Google Scholar 

  20. Du C, Wang Z, Hou J et al (2014) Production of titanium powder by sodiothermic reduction in CaCl2 molten salts. Metall Mater Trans B 45:1750–1756. https://doi.org/10.1007/s11663-014-0083-2

    Article  CAS  Google Scholar 

  21. Descallar-Arriesgado RF, Kobayashi N, Kikuchi T, Suzuki RO (2011) Calciothermic reduction of NiO by molten salt electrolysis of CaO in CaCl2melt. Electrochim Acta 56:8422–8429. https://doi.org/10.1016/j.electacta.2011.07.027

    Article  CAS  Google Scholar 

  22. Xiao W, Wang D (2014) The electrochemical reduction processes of solid compounds in high temperature molten salts. Chem Soc Rev 43:3215–3228. https://doi.org/10.1039/c3cs60327j

    Article  CAS  Google Scholar 

  23. Mohandas KS (2013) Direct electrochemical conversion of metal oxides to metal by molten salt electrolysis: a review. Miner Process Extr Metall 122:195–212. https://doi.org/10.1179/0371955313Z.00000000069

    Article  CAS  Google Scholar 

  24. Abbasalizadeh A, Seetharaman S, Teng L et al (2013) Highlights of the salt extraction process. JOM. https://doi.org/10.1007/s11837-013-0752-7

    Article  Google Scholar 

  25. Schulze R, Abbasalizadeh A, Bulach W et al (2018) An ex-ante LCA study of rare earth extraction from NdFeB magnet scrap using molten salt electrolysis. J Sustain Metall 4:493–505. https://doi.org/10.1007/s40831-018-0198-9

    Article  Google Scholar 

  26. Abbasalizadeh A, Malfliet A, Seetharaman S et al (2017) Electrochemical extraction of rare earth metals in molten fluorides: conversion of rare earth oxides into rare earth fluorides using fluoride additives. J Sustain Metall 3:627–637. https://doi.org/10.1007/s40831-017-0120-x

    Article  Google Scholar 

  27. Free M, Moats M, Houlachi G et al (2012) Electrometallurgy 2012. Wiley, Hoboken

    Book  Google Scholar 

  28. Wang D, Gmitter AJ, Sadoway DR (2011) Production of oxygen gas and liquid metal by electrochemical decomposition of molten iron oxide. J Electrochem Soc 158:E51. https://doi.org/10.1149/1.3560477

    Article  CAS  Google Scholar 

  29. Ozkalafat P, Kartal Sireli G, Timur S (2016) Electrodeposition of titanium diboride from oxide based melts. Surf Coatings Technol 308:128–135. https://doi.org/10.1016/j.surfcoat.2016.05.089

    Article  CAS  Google Scholar 

  30. Vignes A (2013b) Molten salt electrolysis operations. In: Vignes A (ed) Extractive metallurgy 3. Wiley-ISTE, Hoboken, pp 265–291

    Chapter  Google Scholar 

  31. Li G, Wang D, Jin X, Chen GZ (2007) Electrolysis of solid MoS2 in molten CaCl2 for Mo extraction without CO2 emission. Electrochem Commun 9:1951–1957. https://doi.org/10.1016/j.elecom.2007.05.007

    Article  CAS  Google Scholar 

  32. Gao H, Tan M, Rong L et al (2014) Preparation of Mo nanopowders through electroreduction of solid MoS 2 in molten KCl–NaCl. Phys Chem Chem Phys 16:19514. https://doi.org/10.1039/C4CP01864H

    Article  CAS  Google Scholar 

  33. Wang T, Gao H, Jin X et al (2011) Electrolysis of solid metal sulfide to metal and sulfur in molten NaCl-KCl. Electrochem Commun 13:1492–1495. https://doi.org/10.1016/j.elecom.2011.10.005

    Article  CAS  Google Scholar 

  34. Sokhanvaran S, Lee S-K, Lambotte G, Allanore A (2016) Electrochemistry of molten sulfides: copper extraction from BaS-Cu2S. J Electrochem Soc 163:D115–D120. https://doi.org/10.1149/2.0821603jes

    Article  CAS  Google Scholar 

  35. Sahu SK, Chmielowiec B, Allanore A (2017) Electrolytic extraction of copper, molybdenum and rhenium from molten sulfide electrolyte. Electrochim Acta 243:382–389. https://doi.org/10.1016/j.electacta.2017.04.071

    Article  CAS  Google Scholar 

  36. Yin H, Chung B, Sadoway DR (2016) Electrolysis of a molten semiconductor. Nat Commun 7:1–5. https://doi.org/10.1038/ncomms12584

    Article  CAS  Google Scholar 

  37. Sharma M, Ortlepp I, Bleck W (2019) Boron in heat-treatable steels: a review. Steel Res Int 90:1–28. https://doi.org/10.1002/srin.201900133

    Article  CAS  Google Scholar 

  38. Gündüz İG, Ekerim A (2019) Production of ferroboron by using redesigned ESR process called electroslag melting for alloying by reductions (ESMAR). Mater Res Express 6:046508. https://doi.org/10.1088/2053-1591/aaf8aa

    Article  CAS  Google Scholar 

  39. Mishra B, Olson DL (2005) Molten salt applications in materials processing. J Phys Chem Solids 66:396–401

    Article  CAS  Google Scholar 

  40. Allanore A (2014) Features and challenges of molten oxide electrolytes for metal extraction. J Electrochem Soc. https://doi.org/10.1149/2.0451501jes

    Article  Google Scholar 

  41. Kartal L, Daryal MB, Şireli GK, Timur S (2019) One-step electrochemical reduction of stibnite concentrate in molten borax. Int J Miner Metall Mater 26:1258–1265. https://doi.org/10.1007/s12613-019-1867-9

    Article  CAS  Google Scholar 

  42. Kartal L, Timur S (2019) Direct electrochemical reduction of copper sulfide in molten borax. Int J Miner Metall Mater 26:992–998. https://doi.org/10.1007/s12613-019-1821-x

    Article  CAS  Google Scholar 

  43. Kartal G, Timur S (2013) Growth kinetics of titanium borides produced by CRTD-Bor method. Surf Coatings Technol 215:440–446. https://doi.org/10.1016/j.surfcoat.2012.08.076

    Article  CAS  Google Scholar 

  44. Radmehr V, Koleini SMJ, Khalesi MR, Tavakoli Mohammadi MR (2013) Ammonia leaching: a new approach of copper industry in hydrometallurgical processes. J Inst Eng Ser D 94:95–104. https://doi.org/10.1007/s40033-013-0029-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levent Kartal.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

The contributing editor for this article was U. Pal.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kartal, L., Daryal, M.B. & Timur, S. A New Approach for Cu and Fe/FexB Production from Chalcopyrite by Molten Salt Electrolysis. J. Sustain. Metall. 6, 751–760 (2020). https://doi.org/10.1007/s40831-020-00312-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-020-00312-4

Keywords

Navigation