Skip to main content

Advertisement

Log in

Effect of a self-rotating oxygen lance system on mass transfer between slag and molten steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

To improve the efficiency of the steelmaking process, a system of self-rotating lance was designed, and corresponding cold simulation mechanism was developed. The influence of the self-rotating lance on the mass transfer rate between slag and molten steel was investigated by comparing this novel system with the traditional oxygen lance. The results show that the self-rotating lance can stably rotate with a gas jet as the power source. The mass transfer rate increases with an increase in the top and bottom blow flow rates and with a decline in the lance position. Approximately 13.7% of the top blow flow rate is converted to stirring energy, which is approximately twice that of the traditional oxygen lance, and the mass transfer rate can increase by over 30%. Furthermore, the impact energy can be concentrated at different depths of the molten bath by adjusting the rotational speed. With the same energy density, the mass transfer rate produced by the self-rotating lance is higher; however, the influence of the energy density on the mass transfer rate is low when the rotational speed is 30–50 r/min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V. Hernandez, K. Peake, A. Dalvi, R. Brown, J. Olurin, T. O’Farrell, M. Zhou, B. Liu, I. Cameron, in: R.E. Ashburn, K.D. Hickey, C.P. Brown, K.J. McGhee (Eds.), AISTech Proceedings, Association for Iron and Steel Technology, Pittsburgh, PA, USA, 2013, pp. 519–526.

    Google Scholar 

  2. H.R. Kokal, M.P. Singh, V.A. Naydyonov, in: C. Young, A. Alfantazi, C. Anderson, A. James, D. Dreisinger, B. Harris (Eds.), Electrometallurgy and Environmental Hydrometallurgy, Vol. 2, The Minerals, Metals and Materials Society, Vancouver, BC, Canada, 2003, pp. 1517–1530.

    Google Scholar 

  3. T. Mukherjee, A. Chatterjee, Bull. Mater. Sci. 19 (1996) 893–903.

    Article  Google Scholar 

  4. B. Deo, J. Halder, B. Snoeijer, A. Overbosch, R. Boom, Ironmak. Steelmak. 32 (2005) 54–60.

    Article  Google Scholar 

  5. S.K. Choudhary, S.N. Lenka, A. Ghosh, Ironmak. Steelmak. 34 (2007) 343–349.

    Article  Google Scholar 

  6. S. Basu, A.K. Lahiri, S. Seetharaman, ISIJ Int. 47 (2007) 766–768.

    Article  Google Scholar 

  7. B. Trantini, P. Vayssiere, J. Iron Steel Inst. 6 (1959) 143.

    Google Scholar 

  8. A. Clerc, J. Duflot, A. Constant, Rev. Met. Paris 61 (1964) 545–567.

    Article  Google Scholar 

  9. W.Y. Yang, Y. Gan, M.L. Wang, China Metallurgy 21 (2011) No. 3, 4–10.

    Google Scholar 

  10. Y. Doh, P. Chapelle, A. Jardy, G. Djambazov, K. Pericleous, G. Ghazal, P. Gardin, Metall. Mater. Trans. B 44 (2013) 653–670.

    Article  Google Scholar 

  11. K.S. Coley, J. Min. Metall. B 49 (2013) 191–199.

    Article  Google Scholar 

  12. L.Z. Yang, Z.S. Yang, G.S. Wei, Y.F. Guo, F. Chen, F.Q. Zheng, ISIJ Int. 59 (2019) 2272–2282.

    Article  Google Scholar 

  13. W.J. Wang, H.X. Zhao, Y.F. Pan, B.M. Wang, K. Hou, Z.F. Yuang, J. Iron Steel Res. 22 (2010) No. 5, 7–10, 22.

  14. J.G. Li, Y.N. Zeng, J.Q. Wang, Z.J. Han, J. Iron Steel Res. Int. 18 (2011) No. 4, 11–18.

    Article  Google Scholar 

  15. M. Lv, R. Zhu, Metall. Res. Technol. 116 (2019) 502.

    Article  Google Scholar 

  16. L. Zhong, Y. Zhu, M. Jiang, Z. Qu, Y. Za, X. Bao, Steel Res. Int. 76 (2005) 611–615.

    Article  Google Scholar 

  17. M. Lv, R. Zhu, H. Wang, R. Bai, Steel Res. Int. 84 (2013) 304–312.

    Article  Google Scholar 

  18. F. Liu, D. Sun, R. Zhu, F. Zhao, J. Ke, Ironmak. Steelmak. 44 (2017) 640–648.

    Article  Google Scholar 

  19. F. Liu, D. Sun, R. Zhu, Y. Li, Metall. Mater. Trans. B 50 (2019) 2362–2376.

    Article  Google Scholar 

  20. Q.R. Fan, in: T. Yang, W. Wang (Eds.), International Congress on the Science and Technology of Ironmaking, The Chinese Society for Metals, Beijing, China, 2009, pp. 1270–1274.

    Google Scholar 

  21. M.C. Díaz, S.V. Komarov, M. Sano, ISIJ Int. 37 (1997) 1–8.

    Article  Google Scholar 

  22. S.L. de Souza Costa, E.P.M. de Araujo, I.L. Alves, J.L. de Siqueira, Rev. Met. Paris 103 (2006) 531–536.

  23. Q.R. Fan, J.Q. Zeng, in: L.J. Jiang, J. Diao, X.S. Li, G.Q. Fan, X. Liu, T. Zhang (Eds.), International Congress on the Science and Technology of Steelmaking, The Chinese Society for Metals, Beijing, China, 2015, pp. 120–123.

    Google Scholar 

  24. X.B. Zhou, M. Ersson, L.C. Zhong, P.G. Jönsson, Steel Res. Int. 86 (2015) 1328–1338.

    Article  Google Scholar 

  25. W.Y. Yang, C. Feng, M.L. Wang, Y.H. Lv, Y.B. Hu, X.Y. Peng, J. Iron Steel Res. 29 (2017) 807–815.

    Google Scholar 

  26. W. Wu, L.B. Yang, C.J. Zheng, L. Liu, J. Iron Steel Res. Int. 17 (2010) No. 9, 7–13.

    Article  Google Scholar 

  27. T. Kohtani, Steelmaking Process 65 (1982) 211–220.

    Google Scholar 

  28. H.S. Zhang, Z.Q. Xiao, Iron and Steel 22 (1987) No. 9, 21–25.

    Google Scholar 

  29. S.H. Kim, R.J. Fruehan, Metall. Trans. B 18 (1987) 381–390.

    Article  Google Scholar 

Download references

Acknowledgements

This research was financed by the National Key Research and Development Program with Project Number 2017YFB0304000 and the Beijing Natural Science Foundation with Project Number 2172057 in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Q., Wu, W., Zhi, Jg. et al. Effect of a self-rotating oxygen lance system on mass transfer between slag and molten steel. J. Iron Steel Res. Int. 28, 152–159 (2021). https://doi.org/10.1007/s42243-020-00515-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00515-9

Keywords

Navigation