Skip to main content
Log in

A novel numerical scheme for a time fractional Black–Scholes equation

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

This paper consists of two parts. On one hand, the regularity of the solution of the time-fractional Black–Scholes equation is investigated. On the other hand, to overcome the difficulty of initial layer, a modified L1 time discretization is presented based on a change of variable. And the spatial discretization is done by using the Chebyshev Galerkin method. Optimal error estimates of the fully-discrete scheme are obtained. Finally, several numerical results are given to confirm the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–654 (1973)

    MathSciNet  MATH  Google Scholar 

  2. Merton, R.C.: Theory of rational option pricing. Bell J. Econ. Manag. Sci. 4, 141–183 (1973)

    MathSciNet  MATH  Google Scholar 

  3. Wyss, W.: The fractional Black–Scholes equation. Fract. Calc. Appl. Anal. 3, 51–61 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Liang, J., Wang, J., Zhang, W., Qiu, W., Ren, F.: Option pricing of a bi-fractional Black–Merton–Scholes model with the Hurst exponent H in \([\frac{1}{2},1]\). Appl. Math. Lett. 23, 859–863 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Jena, R.M., Chakraverty, S., Baleanu, D.: A novel analytical technique for the solution of time-fractional Ivancevic option pricing model. Physica A. 550, 124380 (2020)

    MathSciNet  Google Scholar 

  6. Chen, W., Xu, X., Zhu, S.P.: Analytically pricing double barrier options based on a time-fractional Black–Scholes equation. Comput. Math. Appl. 69, 1407–1419 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Zhang, H., Liu, F., Turner, I., Yang, Q.: Numerical solution of the time fractional Black–Scholes model governing European options. Comput. Math. Appl. 71, 1772–1783 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Dubey, V.P., Kumar, R., Kumar, D.: A reliable treatment of residual power series method for time-fractional Black–Scholes European option pricing equation. Physica A. 533, 122040 (2019)

    MathSciNet  Google Scholar 

  9. Roul, P.: A high accuracy numerical method and its convergence for time-fractional Black–Scholes equation governing European options. Appl. Numer. Math. 151, 472–493 (2020)

    MathSciNet  MATH  Google Scholar 

  10. De Staelen, R.H., Hendy, A.S.: Numerically pricing double barrier options in a time-fractional Black–Scholes model. Comput. Math. Appl. 74, 1166–1175 (2017)

    MathSciNet  MATH  Google Scholar 

  11. Kumar, S., Kumar, D., Singh, J.: Numerical computation of fractional Black–Scholes equation arising in financial market. Egyptian J. Basic Appl. Sci. 1, 177–193 (2014)

    Google Scholar 

  12. Koleva, M.N., Vulkov, L.G.: Numerical solution of time-fractional Black–Scholes equation. J. Comput. Appl. Math. 36, 1699–1715 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Yang, X., Wu, L., Sun, S., Zhang, X.: A universal difference method for time-space fractional Black–Scholes equation. Adv. Differ. Equ. 71, 1–14 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Li, D., Liao, H., Sun, W., Wang, J., Zhang, J.: Analysis of L1-Galerkin FEMs for time fractional nonlinear parabolic problems. Commun. Comput. Phys. 24, 86–103 (2018)

    MathSciNet  Google Scholar 

  15. Li, D., Wang, J., Zhang, J.: Unconditionally convergent \(L1\)-Galerkin FEMs for nonlinear time-fractional Schrödinger equations. SIAM J. Sci. Comput. 39, 3067–3088 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Zhang, Q., Ran, M., Xu, D.: Analysis of the compact difference scheme for the semilinear fractional partial differential equation with time delay. Appl. Anal. 96, 1867–1884 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Sun, Z.Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    MathSciNet  MATH  Google Scholar 

  18. Roul, P.: Analytical approach for the nonlinear partial differential equations of fractional order. Commun. Theor. Phys. 60, 269–277 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Mao, Z., Karniadakis, G.E.: A spectral method (of exponential convergence) for singular solutions of the diffusion equation with general two-sided fractional derivative. SIAM J. Numer. Anal. 56, 24–49 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Chen, X., Di, Y., Duan, J., Li, D.: Linearized compact ADI schems for nonlinear time-fractional Schrödinger equations. Appl. Math. Lett. 84, 160–167 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Sheng, C., Shen, J.: A space-time Petrov–Galerkin spectral method for time fractional diffusion equation. Numer. Math. Theor. Meth. Appl. 11, 854–876 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Sun, H., Sun, Z., Du, R.: A linearized second-order difference scheme for the nonlinear time-fractional fourth-order reaction-diffusion equation. Numer. Math. Theor. Meth. Appl. 12, 1168–1190 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Cui, M.: Finite difference schemes for the variable coefficients single and multi-term time-fractional diffusion equations with non-smooth solutions on graded and uniform meshes. Numer. Math. Theor. Meth. Appl. 12, 1004–8979 (2019)

    MathSciNet  Google Scholar 

  24. Ran, M., Zhang, C.: A high-order accuracy method for solving the fractional diffusion equations. J. Comput. Math. 38, 239–253 (2020)

    MathSciNet  MATH  Google Scholar 

  25. Kopteva, N., Stynes, M.: An efficient collocation method for a Caputo two-point boundary value problem. BIT. 55, 1105–1123 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Stynes, M., Gracia, J.L.: A finite difference method for a two- point boundary value problem with a Caputo fractional derivative. IMA J. Numer. Anal. 35, 689–721 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Gracia, J.L., Stynes, M.: Central difference approximation of convection in Caputo fractional derivative two-point boundary value problems. J. Comput. Appl. Math. 273, 103–115 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Li, L., Li, D.: Exact solutions and numerical study of time fractional Burgers’ equations. Appl. Math. Lett. 100, 106011 (2020)

    MathSciNet  MATH  Google Scholar 

  29. Jin, B., Li, B., Zhou, Z.: Numerical analysis of nonlinear subdiffusion equations. SIAM J. Numer. Anal. 56, 1–23 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Li, D., Sun, W., Wu, C.: A novel numerical approach to time-fractional parabolic equations with nonsmooth solutions. Numer. Math. Theor. Meth. Appl. (2021). https://doi.org/10.4208/nmtma.OA-2020-0129

    Article  MathSciNet  Google Scholar 

  31. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Cen, Z., Huang, J., Xu, A., Le, A.: Numerical approximation of a time-fractional Black–Scholes equation. Comput. Math. Appl. 75, 2874–2887 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Li, D., Wu, C., Zhang, J.: Linearized Galerkin FEMs for nonlinear time fractional parabolic problems with non-smooth solutions in time direction. J. Sci. Comput. 80, 403–419 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Kopteva, N.: Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions. Math. Comput. 88, 2135–2155 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Cao, W., Zeng, F., Zhang, Z., Karniadakis, G.E.: Implicit-Explicit difference schemes for nonlinear fractional differential equations with nonsmooth solutions. SIAM J. Sci. Comput. 38, 3070–3093 (2016)

    MathSciNet  MATH  Google Scholar 

  36. Jin, B., Li, B., Zhou, Z.: Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM J. Sci. Comput. 39, 3129–3152 (2017)

    MathSciNet  Google Scholar 

  37. Courant, R., Hilbert, D., Bergmann, P.: Methods of Mathematical Physics. Interscience Publishers Inc, New York (1953)

    MATH  Google Scholar 

  38. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  39. Shen, J., Tang, T., Wang, L.L.: Spectral Methods. Springer, Heidelberg (2011)

    MATH  Google Scholar 

  40. Canuto, C., Quarteroni, A.: Approximation results for orthognal polynomials in Sobolev Spaces. Math. Comput. 38, 67–86 (1982)

    MATH  Google Scholar 

  41. Bressan, N., Quarteroni, A.: Analysis of Chebyshev collocation methods for parabolic equations. SIAM J. Numer. Anal. 23, 1138–1154 (1986)

    MathSciNet  MATH  Google Scholar 

  42. Thomée, V.: Galerkin finite element methods for parabolic problems. Springer, Berlin (2006)

    MATH  Google Scholar 

  43. Zhou, B., Chen, X., Li, D.: Nonuniform Alikhanov linearized Galerkin finite element methods for nonlinear time-fractional parabolic equations. J. Sci. Comput. 85, 39 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renxuan Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by NSFC (Grant No.11771162)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

She, M., Li, L., Tang, R. et al. A novel numerical scheme for a time fractional Black–Scholes equation. J. Appl. Math. Comput. 66, 853–870 (2021). https://doi.org/10.1007/s12190-020-01467-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01467-9

Keywords

Navigation