Skip to main content
Log in

Application of Hypergeometric Functions of Several Variables in the Mathematical Theory of Communication: Evaluation of Error Probability in Fading Singlechannel System

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

A method is proposed of evaluation of symbol and/or bit error probabilities for coherent receiving of multipositional signal constructions in communication channel with fadings, which are described with the help of classical and generalized models Multiple-Wave with Diffuse Power (MWDP) fading and of additive white Gaussian noise (AWGN). This method uses the hypergeometric functions of several variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. In scientific literature it is sometimes appeared incorrect coefficient before imaginary part of the characteristic function.

REFERENCES

  1. N. V. Savischenko, Special Integral Functions Used in Wireless Communications Theory (World Scientific, Singapore, 2014).

    Book  Google Scholar 

  2. M. Nakagami, ‘‘The \(m\)-distribution—A general formula of intensity distribution of rapid fading,’’ inStatistical Methods in RadioWave Propagation, Ed. by W. C. Hoffman (Pergamon, New York, 1960), pp. 3–36.

  3. G. D. Durgin, T. S. Rappaport, and D. A. de Wolf, ‘‘New analytical models and probability density functions for fading in wireless communications,’’ IEEE Trans. Commun.50, 1005–1015 (2002).

    Article  Google Scholar 

  4. R. Esposito and L. Wilson, ‘‘Statistical properties of two sine waves in Gaussian noise,’’ IEEE Trans. Inform. Theory 19, 176–183 (1973).

    Article  MathSciNet  Google Scholar 

  5. Yu. A. Brychkov and N. V. Savischenko, ‘‘A special function of communication theory,’’ Integral Transforms Spec. Funct. 26, 470–484 (2015).

    Article  MathSciNet  Google Scholar 

  6. Y. L. Luke, Mathematical Functions and their Approximations (Academic, New York, 1975).

    MATH  Google Scholar 

  7. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 2: Special Function (Gordon and Breach Science, New York, 1986).

  8. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 3: More Special Function (Gordon and Breach Science, New York, 1990).

  9. Yu. A. Brychkov, O. I. Marichev, and N. V. Savischenko, Handbook of Mellin Transforms (Chapman and Hall/CRC, Boca Raton, 2019).

    MATH  Google Scholar 

  10. Yu. A. Brychkov, Handbook of Special Functions: Derivatives, Integrals, Series and Other Formulas (Chapman and Hall/CRC, Boca Raton, FL, 2008).

    Book  Google Scholar 

  11. H. Bateman and A. Erdèlyi, Higher Transcendental Functions (McGraw-Hill, New York, 1953), Vol. 2.

    MATH  Google Scholar 

  12. H. Exton, Multiple Hypergeometric Functions and Applications (Ellis Horwood, Wiley, Halsted, Chichester, 1976).

  13. H. M. Srivastava and H. Exton, ‘‘On Laplace’s linear differential equation of general order,’’ Nederl. Akad. Wetensch. Proc., Ser. A 76, Indag. Math. 35, 371–374 (1973).

    Article  Google Scholar 

  14. F. W. J. Olver, D. M. Lozier, R. F. Boisvert, and Ch. W. Clark, NIST Handbook of Mathematical Functions (Cambridge Univ. Press, Cambridge, 2010).

    MATH  Google Scholar 

  15. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 10th ed. (U.S. Dep. Commerce—NBS, Gaithersburg, MD, 1972).

    MATH  Google Scholar 

  16. L. J. Slater, Confluent Hypergeometric Functions (Cambridge Univ. Press, London, 1960).

    MATH  Google Scholar 

  17. H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series (Halsted Press, Chichester, 1985).

    MATH  Google Scholar 

  18. H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions (Halsted Press, Chichester, 1984).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. A. Brychkov or N. V. Savischenko.

Additional information

(Submitted by A. M. Elizarov)

Appendix A. PROBABILITY DENSITY FUNCTION FOR MWDP

Appendix A. PROBABILITY DENSITY FUNCTION FOR MWDP

Consider the integral

$$J_{n}\left(\genfrac{}{}{0.0pt}{0}{\left(a_{n}\right);}{\sigma^{2},\mu,\left(\nu_{n}\right);s}\right)=\int\limits_{0}^{\infty}x^{s-1}e^{-\sigma^{2}x^{2}/2}J_{\nu_{1}}\left(a_{1}x\right)J_{\nu_{2}}\left(a_{2}x\right)\dots J_{\nu_{n}}\left(a_{n}x\right)dx.$$
(A1)

Since \(J_{\nu}\left(z\right)=\dfrac{\left(z/2\right)^{\nu}}{\Gamma\left(\nu+1\right)}_{0}F_{1}\left(\nu+1;{-}\dfrac{z^{2}}{4}\right)\) the equality (A1) can be converted to the form

$$J_{n}\left(\genfrac{}{}{0.0pt}{0}{\left(a_{n}\right);}{\sigma^{2},\mu,\left(\nu_{n}\right);s}\right)=\frac{2^{-\nu_{1}-\dots-\nu_{n}}a_{1}^{\nu_{1}}\dots a_{n}^{\nu_{n}}}{\Gamma\left(\nu_{1}+1\right)\dots\Gamma\left(\nu_{n}+1\right)}\int\limits_{0}^{\infty}x^{s+\nu_{1}+\dots+\nu_{n}-1}$$
$${}\times e^{-\sigma^{2}x^{2}/2}{}_{0}F_{1}\left(\nu_{1}+1;{-}\frac{a_{1}^{2}x^{2}}{4}\right)\dots{}_{0}F_{1}\left(\nu_{n}+1;{-}\frac{a_{n}^{2}x^{2}}{4}\right)dx,$$

After the change of variable \(t=\sigma^{2}x^{2}/2\) and simple transformations we obtain

$$J_{n}\left(\genfrac{}{}{0.0pt}{0}{\left(a_{n}\right);}{\sigma^{2},\mu,\left(\nu_{n}\right);s}\right)=\frac{1}{2}\left(\frac{2}{\sigma^{2}}\right)^{s/2}\prod_{k=1}^{n}\left(\frac{a_{k}^{2}}{2\sigma^{2}}\right)^{\nu_{k}/2}\Gamma\biggl{[}\genfrac{}{}{0.0pt}{0}{\frac{s+\nu_{1}+\dots+\nu_{n}}{2}}{\nu_{1}+1,\dots,\nu_{n}+1}\biggr{]}$$
$${}\times\Psi_{2}^{(n)}\left(\frac{s+\nu_{1}+\dots+\nu_{n}}{2};\nu_{1}+1,\ldots,\nu_{n}+1;{-}\frac{a_{1}^{2}}{2\sigma^{2}},\ldots,-\frac{a_{n}^{2}}{2\sigma^{2}}\right),$$

Here we use the formula

$$\Psi_{2}^{(n)}\left(a;c_{1},\ldots,c_{n};z_{1},\ldots,z_{n}\right)=\frac{1}{\Gamma\left(a\right)}\int\limits_{0}^{\infty}t^{a-1}e^{-t}{}_{0}F_{1}\left(c_{1};z_{1}t\right)\dots{}_{0}F_{1}\left(c_{n};z_{n}t\right)dt,$$

which follows from the relations

$$F_{A}^{(n)}\left(a,b_{1},\ldots,b_{n};c_{1},\ldots,c_{n};z_{1},\ldots,z_{n}\right)=\frac{1}{\Gamma\left(a\right)}\int\limits_{0}^{\infty}t^{a-1}e^{-t}{}{}_{1}F_{1}\left(b_{1};c_{1};z_{1}t\right)\dots{}_{1}F_{1}\left(b_{n};c_{n};z_{n}t\right)dt,$$
$${}_{0}F_{1}\left(b;z\right)=\lim_{a\to\infty}{}_{1}F_{1}\left(a;b;\frac{z}{a}\right),$$

where the Lauricella function is defined as

$$F_{A}^{(n)}\left(a,b_{1},\ldots,b_{n};c_{1},\ldots,c_{n};z_{1},\ldots,z_{n}\right)$$
$${}=\sum\limits_{k_{1},\ldots,k_{n}=0}^{\infty}\dfrac{\left(a\right)_{k_{1}+\ldots+k_{n}}\left(b_{1}\right)_{k_{1}}\ldots\left(b_{n}\right)_{k_{n}}}{\left(c_{1}\right)_{k_{1}}\ldots\left(c_{n}\right)_{k_{n}}}\dfrac{z_{1}^{k_{1}}\ldots z_{n}^{k_{n}}}{k_{1}!\ldots k_{n}!},\qquad\biggl{[}\displaystyle\sum\limits_{j=1}^{n}|z_{j}|<1\biggr{]},$$

and the conluent function as

$$\Psi_{2}^{(n)}\left(a;c_{1},\ldots,c_{n};z_{1},\ldots,z_{n}\right)=\lim_{|b|\to\infty}F_{C}^{(n)}\left(a,b;c_{1},\ldots,c_{n};\frac{z_{1}}{b},\ldots,\frac{z_{n}}{b}\right)$$
$$=\lim_{\min\left(|b_{1}|,\dots,|b_{n}|\right)\to\infty}F_{A}^{(n)}\left(a,b_{1},\ldots,b_{n};c_{1},\ldots,c_{n};\frac{z_{1}}{b_{1}},\ldots,\frac{z_{n}}{b_{n}}\right)=\displaystyle\sum\limits_{k_{1},\ldots,k_{n}=0}^{\infty}\dfrac{\left(a\right)_{k_{1}+\ldots+k_{n}}}{\left(c_{1}\right)_{k_{1}}\ldots\left(c_{n}\right)_{k_{n}}}\dfrac{z_{1}^{k_{1}}\ldots z_{n}^{k_{n}}}{k_{1}!\ldots k_{n}!},$$

and

$$F_{C}^{(n)}\left(a,b;c_{1},\ldots,c_{n};z_{1},\ldots,z_{n}\right)=\displaystyle\sum\limits_{k_{1},\ldots,k_{n}=0}^{\infty}\dfrac{\left(a\right)_{k_{1}+\ldots+k_{n}}\left(b\right)_{k_{1}+\ldots+k_{n}}}{\left(c_{1}\right)_{k_{1}}\ldots\left(c_{n}\right)_{k_{n}}}\dfrac{z_{1}^{k_{1}}\ldots z_{n}^{k_{n}}}{k_{1}!\ldots k_{n}!},\qquad\biggl{[}\displaystyle\sum\limits_{j=1}^{n}\sqrt{|z_{j}|}<1\biggr{]}.$$

Remark 1. From the integral representation of  the Lauricella function and identity \({}_{1}F_{1}\left(a,b;z\right)=e^{z}{}_{1}F_{1}\left(b-a,b;{-}z\right)\) with \(\sum_{j=1}^{n}|z_{j}|<1\), it follows that

$$F_{A}^{(n)}\left(a,\left(b_{n}\right);\left(c_{n}\right);z_{1},\ldots,z_{n}\right)=\left(1-z_{1}-\dots-z_{n}\right)^{-a}$$
$${}\times F_{A}^{(n)}\left(a,\left(b_{n}-c_{n}\right);\left(c_{n}\right);-\frac{z_{1}}{1-z_{1}-\dots-z_{n}},\ldots,-\frac{z_{n}}{1-z_{1}-\dots-z_{n}}\right).$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brychkov, Y.A., Savischenko, N.V. Application of Hypergeometric Functions of Several Variables in the Mathematical Theory of Communication: Evaluation of Error Probability in Fading Singlechannel System. Lobachevskii J Math 41, 1971–1991 (2020). https://doi.org/10.1134/S1995080220100066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080220100066

Keywords:

Navigation