Skip to main content
Log in

Generalized Eshelby Problem in the Gradient Theory of Elasticity

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

A generalized Eshelby problem of arbitrary order in the gradient elasticity for a multilayer inclusions of spherical shape with a polynomial strain field at infinity is considered. For this problem we propose a constructive method of solution in a closed finite form, using generalized Papkovich–Neuber representation and the system of canonical potentials based on harmonic polynomials. We use also the Gauss theorem on the decomposition of an arbitrary homogeneous polynomials. The solutions of the generalized Eshelby problem are applied in the method of asymptotic homogenization of the gradient elasticity to accurately calculation of the effective characteristics of composite materials with scale effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. J. D. Eshelby, ‘‘The determination of the elastic field of an ellipsoidal inclusion and related problems,’’ Proc. R. Soc. London, Ser. A 241, 376–396 (1957).

    Article  MathSciNet  Google Scholar 

  2. R. M. Christensen, Mechanics of Composite Materials (Wiley, New York, 1979).

    Google Scholar 

  3. E. Herve and A. Zaoui, ‘‘n-Layered inclusion-based micromechanical modelling,’’ Int. J. Eng. Sci. 31, 1–10 (1993).

    Article  Google Scholar 

  4. D. B. Volkov-Bogorodskii and S. A. Lurie, ‘‘Solution of the Eshelby problem in gradient elasticity for multilayer spherical inclusions,’’ Mech. Solids 51, 161–176 (2016).

    Article  Google Scholar 

  5. D. B. Volkov-Bogorodskii, ‘‘Radial multipliers method in mechanics of inhomogeneous media with multi-layered inclusions,’’ Mekh. Kompoz. Mater. Konstruk. 22 (1), 12–39 (2016).

    Google Scholar 

  6. P. F. Papkovich, ‘‘Solution générale des équations différentielles fondamentales de l’élasticité, exprimeé par trois fonctiones harmoniques,’’ C.R. Acad. Sci. (Paris) 195, 513–515 (1932).

    Google Scholar 

  7. H. Neuber, ‘‘Ein neuer ansatz zur lösung raümlicher probleme der elastizitätstheorie,’’ Z. Appl. Math. Mech. 14, 203–212 (1934).

    Article  Google Scholar 

  8. S. Lurie, D. Volkov-Bogorodskiy, E. Moiseev, and A. Kholomeeva, ‘‘Radial multipliers in solutions of the Helmholtz equations,’’ Integral Transforms Spec. Funct. 30, 254–263 (2019).

    Article  MathSciNet  Google Scholar 

  9. S. A. Lurie and D. B. Volkov-Bogorodskiy, ‘‘On the radial multipliers method in the gradient elastic fracture mechanics,’’ Lobachevskii J. Math. 40 (7), 984–991 (2019).

    Article  MathSciNet  Google Scholar 

  10. D. B. Volkov-Bogorodskiy and E. I. Moiseev, ‘‘Systems of functions consistent with inhomogeneities of elliptic and spheroidal shapes in problems of continuum mechanics,’’ Lobachevskii J. Math. 40 (7), 1016–1024 (2019).

    Article  MathSciNet  Google Scholar 

  11. J. M. Doyle, ‘‘A general solution for strain-gradient elasticity theory,’’ J. Math. Anal. Appl. 27, 171–180 (1969).

    Article  Google Scholar 

  12. S. Lurie, P. Belov, D. Volkov-Bogorodsky, and N. Tuchkova, ‘‘Interphase layer theory and application in the mechanics of composite materials,’’ J. Mater. Sci. 41, 6693–6707 (2006).

    Article  Google Scholar 

  13. S. Lurie, D. Volkov-Bogorodsky, V. Zubov, and N. Tuchkova, ‘‘Advanced theoretical and numerical multiscale modeling of cohesion/adhesion interactions in continuum mechanics and its applications for filled nanocomposites,’’ Comput. Mater. Sci. 45, 709–714 (2009).

    Article  Google Scholar 

  14. D. B. Volkov-Bogorodskiy, S. A. Lurie, and G. I. Kriven, ‘‘Modeling the effective dynamic properties of fiber composites modified across length scales,’’ Nanosci. Technol. Int. J. 9, 117–138 (2018).

    Article  Google Scholar 

  15. S. A. Lurie, D. B. Volkov-Bogorodskiy, O. Menshykov, Y. O. Solyaev, and E. C. Aifantis, ‘‘Modeling the effective mechanical properties of ’fuzzy fiber’ composites across scales length,’’ Composites, Part B 142, 24–35 (2018).

    Article  Google Scholar 

  16. N. Bakhvalov and G. Panasenko, Homogenization: Averaging Processes in Periodic Media (Kluwer Academic, Dordrecht, Boston, London, 1989).

    Book  Google Scholar 

  17. S. L. Sobolev, Introduction to the Theory of Cubature Formulas (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

Download references

Funding

The work was carried out with the support of Russian Government Foundation to the Institute of Applied Mechanics of the Russian Academy of Sciences (no. AAAA-A19-119012290177-0) and partially supported by grants no. 18-29-10085 mk of the Russian Foundation for Basic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Volkov-Bogorodskiy.

Additional information

(Submitted by A. V. Lapin)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov-Bogorodskiy, D.B., Moiseev, E.I. Generalized Eshelby Problem in the Gradient Theory of Elasticity. Lobachevskii J Math 41, 2083–2089 (2020). https://doi.org/10.1134/S1995080220100169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080220100169

Keywords:

Navigation