Skip to main content
Log in

Electroelastic Actuator for Nanomechanics

  • Published:
Russian Engineering Research Aims and scope

Abstract

Structural-parametric models of electroelastic actuators for nanomechanics are presented. The structure of the actuators is established, and their transfer functions are determined. Transfer functions are derived for a piezo actuator with a generalized piezo effect. The change in elastic pliability and rigidity of the actuator is established in the case of voltage control and also current control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Schultz, J., Ueda, J., and Asada, H., Cellular Actuators, Oxford: Butterworth-Heinemann, 2017.

    Google Scholar 

  2. Cady, W.G., Piezoelectricity: An Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals, New York: McGraw-Hill, 1946.

    Google Scholar 

  3. Afonin, S.M., Structural-parametric model and transfer functions of electroelastic actuator for nano- and microdisplacement, in Piezoelectrics and Nanomaterials: Fundamentals, Developments and Applications, Parinov, I.A., Ed., New York: Nova Science, 2015, ch. 9, pp. 225–242.

    MATH  Google Scholar 

  4. Nikol’skii, A.A., Tochnye dvukhkanal’nye sledyashchie elektroprivody s p’ezokompensatorami (Precise Two-Channel Tracking Electric Actuators with Piezocompensators), Moscow: Energoatomizdat, 1988.

  5. Panich, A.E., P’ezokeramicheskie aktyuatory (Piezoceramic Actuators), Rostov-on-Don: Yuzhn. Fed. Univ., 2008.

  6. Afonin, S.M., Structural parametric model of a piezoelectric nanodisplacement transducer, Dokl. Phys., 2008, vol. 53, no. 3, pp. 137–143.

    Article  Google Scholar 

  7. Afonin, S.M., Structural-parametric model of a piezonanomotor, Vestn. Mashinostr., 2001, no. 5, pp. 29–33.

  8. Physical Acoustics: Principles and Methods, Vol. 1, Part A: Methods and Devices, Mason, W., Ed., New York: Academic, 1964.

    Google Scholar 

  9. Polyanin, A.D., Spravochnik po lineinym uravneniyam matematicheskoi fiziki (Handbook on Linear Equations in Mathematical Physics), Moscow: Fizmatlit, 2001.

  10. Afonin, S.M., Compression and elastic-pliability diagrams of nano-scale piezomotors, Vestn. Mashinostr., 2003, no. 9, pp. 16–18.

  11. Afonin, S.M., Multilayer piezoelectric nano- and micromotors with a transverse piezo effect, Russ. Eng. Res., 2014, vol. 34, no. 11, pp. 671–679.

    Article  Google Scholar 

  12. Afonin, S.M., A structural-parametric model of electroelastic actuator for nano- and microdisplacement of mechatronic system, in Advances in Nanotechnology, Bartul, Z. and Trenor, J., Eds., New York: Nova Science, 2017, vol. 19, ch. 8, pp. 259–284.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Afonin.

Additional information

Translated by B. Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afonin, S.M. Electroelastic Actuator for Nanomechanics. Russ. Engin. Res. 40, 893–900 (2020). https://doi.org/10.3103/S1068798X20110039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X20110039

Keywords:

Navigation