Skip to main content
Log in

Dissociation of Phenylacetylene and Its Derivatives by Electron Impact

  • ELEMENTARY PHYSICOCHEMICAL PROCESSES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Phenylacetylene and its chemically active isomer pentalene play an important role in the formation and destruction of polyaromatic hydrocarbons—the main components of the soot microparticles formed during the combustion of fossil fuel, which are the most dangerous anthropogenic aerosol air pollutants for human health. The probable mechanisms of the decay of phenylacetylene and its isomers upon ionization by electron impact are considered. It is shown that the loss of electrons during ionization changes the aromatic/antiaromatic properties of phenylacetylene and its isomers to the opposite properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. D. W. Dockery, C. A. Pope, X. Xu, et al., N. Engl. J. Med. 329, 1753 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. F. J. Miller, D. E. Gardner, J. A. Graham, et al., J. Air Poll. Control. Assoc. 29, 610 (1979).

    Article  CAS  Google Scholar 

  3. G. V. Golubkov, M. I. Manzhelii, and A. A. Lushnikov, Russ. J. Phys. Chem. B 8, 604 (2014).

    Article  CAS  Google Scholar 

  4. G. V. Golubkov, M. I. Manzhelii, A. A. Berlin, and A. A. Lushnikov, Russ. J. Phys. Chem. B 10, 77 (2016).

    Article  CAS  Google Scholar 

  5. G. V. Golubkov, M. I. Manzhelii, A. A. Berlin, A. A. Lushnikov, and L. V. Eppelbaum, Russ. J. Phys. Chem. B 12, 725 (2018).

    Article  CAS  Google Scholar 

  6. H. Richter and J. B. Howard, Phys. Chem. Chem. Phys. 4, 2038 (2002).

    Article  CAS  Google Scholar 

  7. Y. A. Dyakov, C. K. Ni, S. H. Lin, et al., J. Phys. Chem. A 109, 8774 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Y. A. Dyakov, C. K. Ni, S. H. Lin, et al., J. Chin. Chem. Soc. 53, 161 (2006).

    Article  CAS  Google Scholar 

  9. Y. A. Dyakov, C. K. Ni, S. H. Lin, et al., Phys. Chem. Chem. Phys. 8, 1404 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. V. V. Kislov and A. M. Mebel, J. Phys. Chem. A 111, 9532 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. C. K. Ni, C. M. Tseng, M. F. Lin, et al., J. Phys. Chem. B 111, 12631 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. M. F. Lin, C. M. Tseng, Y. A. Dyakov, et al., J. Chem. Phys. 126, 241104 (2007).

    Article  PubMed  CAS  Google Scholar 

  13. O. Sorkhabi, F. Qi, A. H. Rizvi, et al., J. Am. Chem. Soc. 123, 671 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Y. A. Dyakov, S. O. Adamson, G. V. Golubkov, et al., in Proceedings of the 14th International Conference on Pulsed Lasers and Laser Applications, Proc. SPIE 11322, 113221Q (2019).

    Google Scholar 

  15. Y. A. Dyakov, A. Bagchi, Y. T. Lee, et al., J. Chem. Phys. 132, 014305 (2010).

    Article  PubMed  CAS  Google Scholar 

  16. Y. L. Yang, Y. A. Dyakov, Y. T. Lee, et al., J. Chem. Phys. 134, 034314 (2011).

    Article  PubMed  CAS  Google Scholar 

  17. A. M. Mebel and A. Landera, J. Chem. Phys. 136, 234305 (2012).

    Article  PubMed  CAS  Google Scholar 

  18. C. M. Tseng, Y. A. Dyakov, C. L. Huang, et al., J. Chin. Chem. Soc. 53, 33 (2006).

    Article  CAS  Google Scholar 

  19. H. C. Hsu, M. T. Tsai, Y. Dyakov, et al., Phys. Chem. Chem. Phys. 13, 8313 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. H. C. Hsu, M. T. Tsai, Y. A. Dyakov, et al., Int. Rev. Phys. Chem. 31, 201 (2012).

    Article  CAS  Google Scholar 

  21. L. Zhao, R. I. Kaiser, B. Xu, et al., J. Phys. Chem. Lett. 9, 2620 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Y. A. Dyakov, A. M. Mebel, S. H. Lin, et al., J. Phys. Chem. A 111, 9591 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. A. Bagchi, Y. A. Dyakov, and C. K. Ni, J. Chem. Phys. 133, 244309 (2010).

    Article  PubMed  CAS  Google Scholar 

  24. Y. A. Dyakov, S. T. Tsai, A. Bagchi, et al., J. Phys. Chem. A 113, 14987 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. A. G. Baboul, L. A. Curtiss, P. C. Redfern, et al., J. Chem. Phys. 110, 7650 (1999).

    Article  CAS  Google Scholar 

  26. L. A. Curtiss, K. Raghavachari, P. C. Redfern, et al., Chem. Phys. Lett. 314, 101 (1999).

    Article  CAS  Google Scholar 

  27. H. Eyring, S. H. Lin, and S. M. Lin, Basic Chemical Kinetics (Wiley, New York, 1980).

    Google Scholar 

  28. J. I. Steinfeld, J. S. Francisco, and W. L. Hase, Chemical Kinetics and Dynamics (Prentice Hall, Upper Saddle River, 1999).

    Google Scholar 

  29. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, et al., Gaussian, 09, Rev. A.02 (Gaussian Inc., Wallingford, CT, 2009).

    Google Scholar 

  30. M. Sharifi, F. Kong, S. L. Chin, et al., J. Phys. Chem. A 111, 9405 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. T. S. Zyubina, Y. A. Dyakov, S. H. Lin, et al., J. Chem. Phys. 123, 134320 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. A. M. Mebel, T. S. Zyubina, Y. A. Dyakov, et al., Int. J. Quant. Chem. 102, 506 (2005).

    Article  CAS  Google Scholar 

  33. Q. Q. Wang, D. Wu, M. X. Jin, et al., J. Chem. Phys. 129, 204302 (2008).

    Article  PubMed  CAS  Google Scholar 

  34. Q. Q. Wang, D. Wu, M. X. Jin, et al., J. Phys. Chem. C 113, 11805 (2009).

    Article  CAS  Google Scholar 

  35. Q. Q. Wang, Y. A. Dyakov, D. Wu, et al., Chem. Phys. Lett. 586, 21 (2013).

    Article  CAS  Google Scholar 

  36. G. V. Golubkov, G. K. Ivanov, and M. G. Golubkov, Khim. Fiz. 24 (9), 3 (2005).

    Google Scholar 

  37. G. K. Ivanov and G. V. Golubkov, Z. Phys. D 1, 199 (1986).

    Article  CAS  Google Scholar 

  38. G. V. Golubkov, M. G. Golubkov, and A. N. Romanov, J. Exp. Theor. Phys. 94, 489 (2002).

    Article  CAS  Google Scholar 

  39. G. V. Golubkov, M. G. Golubkov, A. N. Romanov, et al., Phys. Chem. Chem. Phys. 5, 3174 (2003).

    Article  CAS  Google Scholar 

  40. S. O. Adamson, R. J. Buenker, G. V. Golubkov, M. G. Golubkov, and A. I. Dement’ev, Russ. J. Phys. Chem. B 3, 195 (2009).

    Article  Google Scholar 

  41. G. V. Golubkov, M. G. Golubkov, and R. J. Buenker, J. Exp. Theor. Phys. 112, 187 (2011).

    Article  CAS  Google Scholar 

Download references

Funding

This study was carried out in the framework of State Assignment of the Ministry of Science and Higher Education of the Russian Federation (registration number AAAA-A19-119010990034-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Dyakov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyakov, Y.A., Puzankov, A.A., Adamson, S.O. et al. Dissociation of Phenylacetylene and Its Derivatives by Electron Impact. Russ. J. Phys. Chem. B 14, 728–732 (2020). https://doi.org/10.1134/S1990793120050188

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793120050188

Keywords:

Navigation