Skip to main content
Log in

Study of the Surface Acetate-Cellulose Layer in the Compositional Membranes by the Vibrational Spectroscopy Method

  • CHEMICAL PHYSICS OF POLYMER MATERIALS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The paper presents the structural organization of the surface (selective) layer. The amorphous phase of the cellulose acetate composite membrane is formed at a certain stage of the technological cycle of producing the cellulose acetate membrane. It presents a mass of broken, entangled, and twisted macromolecular chains connected by a network of hydrogen bonds of various strengths. Analysis of the IR spectra, where the shapes of the absorption bands of the valence vibrations of hydroxyl groups at ν = 3339.14–3366.2 cm–1 with the asymmetry coefficient varying from ~1 for a dry sample to 0.79 for a wet sample, suggests that the bulk supramolecular structure of the cellulose acetate layer of the air-dry sample is formed by two types of hydrogen bonds and the dipole–dipole interactions of the carbonyl groups. The interactions of macromolecules in the equatorial plane are formed by a network of hydrogen bonds of the OH…O type with the participation of a single hydroxyl group of the pyranose ring in cellulose acetate. In the axial direction, the supramolecular structure is organized through the hydrogen bonds of the CH…O=C type between the methane and carbonyl groups, as well as possibly the dipole–dipole interactions between the coplanar ordered dipoles of the C=O groups. The coefficient of asymmetry of the absorption bands of hydroxyl groups is reduced to 0.81–0.79 and the intensity of the absorption band of methyl groups is reduced by factors of 2.56, 3.3, and 3.8 in water-saturated samples due to the destruction of the supramolecular structure and the reorganization of the hydrogen bonds between the active groups of cellulose acetate and water molecules. The absence of an absorption band of ν = 873.53–851.9 cm–1 in the water-saturated samples indicates a conformational rearrangement of the macromolecules into a linear form with the formation of narrow mesopores of cellulose acetate between the macromolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. N. Filippov, R. Kh. Iksanov, N. A. Kononenko, N. P. Berezina, and I. V. Falina, Colloid. J. 72, 243 (2010).

    Article  CAS  Google Scholar 

  2. N. P. Evlampieva, M. L. Gringol’ts, I. I. Zaitseva, and E. I. Ryumtsev, Vysokomol. Soedin., Ser. A 52, 1318 (2010).

    CAS  Google Scholar 

  3. H. F. Ridgway, G. Orbell, and S. Gray, J. Membr. Sci. 524, 436 (2017).

    Article  CAS  Google Scholar 

  4. G. B. Mel’nikova, G. K. Zhavnerko, S. A. Chizhik, et al., Membr. Membr. Tekhnol., No. 2, 144 (2016).

  5. S. Wu, X. Qin, and M. Li, J. Industr. Textiles 44, 85 (2014).

    CAS  Google Scholar 

  6. E. Drazevic, K. Kosutic, and V. Freger, Water Res. 49, 444 (2014).

    Article  CAS  Google Scholar 

  7. L. N. Potekhina and V. M. Sedelkin, Vestn. Sarat. GTU 1 (1), 110 (2011).

    Google Scholar 

  8. S. K. Gupta, P. Singh, and R. Kumar, Radiat. Eff. Defects Solids 169, 679 (2014).

    Article  CAS  Google Scholar 

  9. E. S. Drozd, S. A. Chizhik, and E. E. Konstantinova, Ross. Zh. Biomekh. 13 (4), 22 (2009).

    Google Scholar 

  10. E. N. Sokolov, Hydrogen Bond (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  11. A. D. Ivakhnov, K. G. Bogolitsyn, and T. E. Skrebets, Izv. Vyssh. Uchebn. Zaved., Lesn. Zh., No. 3, 114 (2010).

  12. I. V. Vorotyntsev, Extended Abstract of Doctoral (Tech. Sci.) Dissertation (Nizh. Novgorod, 2011). https://new-disser.ru/_avtoreferats/01005463980.pdf.

  13. J. Haslam, H. A. Willis, and D. C. M. Squirrell, Identification and Analysis of Plastics (Iliffe, London, 1972).

    Google Scholar 

  14. S. I. Lazarev, Yu. M. Golovin, D. O. Abonosimov, and K. K. Polyansky, Pet. Chem. 54, 622 (2014).

    Article  CAS  Google Scholar 

  15. R. G. Zhbankov and P. V. Kozlov, Physics of Cellulose and Its Derivatives (Nauka i Tekhnika, Minsk, 1983), p. 233 [in Russian].

    Google Scholar 

  16. N. G. Bazarnova, E. V. Karpova, I. B. Katrakov, et al., Research Methods of Wood and its Derivatives, The School-Book (Alt. Gos. Univ., Baranul, 2002) [in Russian].

  17. C. M. Popescu, G. Singurel, M. C. Popescu, et al., Carbohydr. Polym. 77, 851 (2009).

    Article  CAS  Google Scholar 

  18. Q. Li, S. Renneckar, Biomacromolecules 12, 650 (2011).

    Article  CAS  Google Scholar 

  19. L. J. Bellami, Infra-Red Spectra of Complex Molecules (Chapman and Hall, London, 1975).

    Book  Google Scholar 

  20. K. Nakanishi, Infrared Absorption Spectroscopy (Holden-Day, Tokyo, 1962).

    Google Scholar 

  21. S. P. Papkov, Liquid Crystalline State of Polymers (Khimiya, Moscow, 1977) [in Russian].

    Google Scholar 

  22. O. A. Osipov, V. I. Minkin, and A. D. Garnovskii, Dipole Moments: Handbook (Vyssh. Shkola, Moscow, 1971) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Lazarev.

Additional information

Translated by M. Drozdova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazarev, S.I., Golovin, Y.M., Khorokhorina, I.V. et al. Study of the Surface Acetate-Cellulose Layer in the Compositional Membranes by the Vibrational Spectroscopy Method. Russ. J. Phys. Chem. B 14, 835–841 (2020). https://doi.org/10.1134/S1990793120050073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793120050073

Keywords:

Navigation