Skip to main content
Log in

The Synthesis of Metal Nanowires in Liquid Nitrogen

  • ELEMENTARY PHYSICOCHEMICAL PROCESSES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

It is shown that nanosized wires with a length of up to ~1 cm or longer from metal nanospheres observed in liquid helium can be efficiently self-assembled in liquid nitrogen, which is a much cheaper and more technologically sophisticated method than the other available methods. The negative effect of the higher temperature can be compensated by applying a uniform electric field with the intensity of ~104 V/cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. L. Foster, Nanotechnology: Science, Innovation, and Opportunity (Prentice Hall, Upper Saddle River, NJ, 2005).

    Google Scholar 

  2. V. L. Bodneva, M. A. Kozhushner, V. S. Posvyanskii, and L. I. Trakhtenberg, Russ. J. Phys. Chem. B 13, 190 (2019).

    Article  CAS  Google Scholar 

  3. E. M. Bayan, T. G. Lupeiko, and L. E. Pustovaya, Russ. J. Phys. Chem. B 13, 383 (2019).

    Article  CAS  Google Scholar 

  4. N. V. Dokhlikova, M. V. Grishin, S. Yu. Sarvadii, and B. R. Shub, Russ. J. Phys. Chem. B 13, 525 (2019).

    Article  CAS  Google Scholar 

  5. A. N. Kovalev, O. I. Rabinovich, and M. I. Timoshina, Physics and Technology of Nanostructured Heterocompositions (MISiS, Moscow, 2015) [in Russian].

  6. E. B. Gordon, A. V. Karabulin, V. I. Matyushenko, V. D. Sizov, and I. I. Khodos, J. Low Temp. Phys. 36, 590 (2010).

    Article  CAS  Google Scholar 

  7. E. B. Gordon, A. V. Karabulin, V. I. Matyushenko, V. D. Sizov, and I. I. Khodos, J. Exp. Theor. Phys. 112, 1061 (2011).

    Article  CAS  Google Scholar 

  8. E. B. Gordon, J. Low Temp. Phys. 38, 1043 (2012).

    Article  CAS  Google Scholar 

  9. E. B. Gordon, V. A. Karabulin, A. A. Morozov, et al., J. Phys. Chem. Lett. 5, 1072 (2014).

    Article  CAS  Google Scholar 

  10. E. B. Gordon and M. I. Kulish, Low Temp. Phys. 43, 1354 (2017).

    Google Scholar 

  11. L. F. Gomez, E. Loginov, and A. F. Vilesov, Phys. Rev. Lett. 108, 155302 (2012).

    Article  Google Scholar 

  12. D. Spence, E. Latimer, C. Feng, et al., Phys. Chem. Chem. Phys. 16, 6903 (2014).

    Article  CAS  Google Scholar 

  13. E. Latimer, D. Spence, C. Feng, et al., Nano Lett. 14, 2902 (2014).

    Article  CAS  Google Scholar 

  14. S. V. Stovbun, A. A. Skoblin, and A. A. Kirsankin, Dokl. Phys. Chem. 477, 216 (2017).

    Article  CAS  Google Scholar 

  15. S. V. Stovbun and A. A. Skoblin, Phys. Chem. Chem. Phys. 21, 5771 (2019).

    Article  CAS  Google Scholar 

  16. S. V. Stovbun and A. A. Skoblin, Russ. J. Phys. Chem. B 13, 205 (2019).

    Article  CAS  Google Scholar 

  17. P. Moroshkin, R. Batulin, P. Leidererc, and K. Konoabd, Phys. Chem. Chem. Phys. 18, 26444 (2016).

    Article  CAS  Google Scholar 

  18. L. F. Gomez, K. R. Ferguson, J. P. Cryan, et al., Science (Washington, DC, U. S.) 345, 906 (2014).

    Article  CAS  Google Scholar 

  19. M. Castro, R. Cuerno, A. Sánchez, and F. Domínguez-Adame, Phys. Rev. E 62, 161 (2000).

    Article  CAS  Google Scholar 

  20. A. Dawar and A. Chandra, Phys. Lett. A 376, 3604 (2012).

    Article  CAS  Google Scholar 

  21. E. F. Mikhailov and S. S. Vlasenko, Phys. Usp. 38, 253 (1995).

    Article  Google Scholar 

  22. E. V. Gurentsov, A. V. Eremin, E. Yu. Popova, et al., Fiz.-Khim. Kinet. Gaz. Din. 14 (2) (2013). http://www. chemphys.edu.ru/pdf/2013-04-29-008.pdf.

  23. N. A. Fuks, The Mechanics of Aerosols (Akad. Nauk SSSR, Moscow, 1955) [in Russian].

    Google Scholar 

  24. W. Wen and K. Lu, Phys. Rev. E 55, 21100 (1997).

    Article  Google Scholar 

  25. A. V. Eremin, E. V. Gurentsov, and K. Yu. Priemchenko, J. Nanopart. Res. 15, 1737 (2013).

    Article  Google Scholar 

  26. E. V. Gurentsov, A. V. Eremin, and K. Yu. Priemchenko, Tech. Phys. 58, 1337 (2013).

    Article  CAS  Google Scholar 

  27. Th. B. Jones, Electromechanics of Particles (Cambridge Univ. Press, Cambridge, (1995).

    Book  Google Scholar 

  28. Ya. I. Frenkel’, Theory of the Phenomena of Atmospheric Electricity (KomKniga, Moscow, 2007; Wright-Patterson Air Force Base, Transl. Div., Foreign Technol. Div., Dayton, OH, 1963).

  29. A. Kh. Vorob’ev, Diffusion Problems in Chemical Kinetics (Mosk. Gos. Univ., Moscow, 2003) [in Russian].

    Google Scholar 

Download references

Funding

This work was performed as part of a state task (topic 45.9, 0082-2014-0011, AAAA-A17-117111600093-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Stovbun.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skoblin, A.A., Zlenko, D.V. & Stovbun, S.V. The Synthesis of Metal Nanowires in Liquid Nitrogen. Russ. J. Phys. Chem. B 14, 723–727 (2020). https://doi.org/10.1134/S1990793120050127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793120050127

Keywords:

Navigation