Skip to main content
Log in

Interaction of Invertebrates and Synthetic Polymers in Soil: A Review

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract

Plastic pollution of the environment (including soil) is one of the world’s great problems; however, little is known about the effect of synthetic polymers on the soil community. This review summarizes the results of experimental research on the effects of plastic on different groups of soil animals (21 studies) and soil animals on plastic in the soil (13 studies). The presence of microplastic in soil has a negative influence on nematodes, collembolans, pot worms, and earthworms. The mechanisms of this influence often involve damage or dysfunction of the digestive system. On the other hand, soil animals can contribute to the mechanical degradation of plastics and stimulate their microbial degradation in soil. Based on the extensive experience in studying the consequences of plastic pollution of marine ecosystems, we discuss the main problems, tasks, and prospects of studies on the interaction between plastic and soil animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Malizia, A. and Monmany-Garzia, A.C., Terrestrial ecologists should stop ignoring plastic pollution in the Anthropocene time, Sci. Tot. Environ., 2019, vol. 668, pp. 1025–1029. https://doi.org/10.1016/j.scitotenv.2019.03.044

    Article  CAS  Google Scholar 

  2. Zalasiewicz, J., Waters, C.N., Sul, J.A.I., et al., The geological cycle of plastics and their use as a stratigraphic indicator of the Anthropocene, Anthropocene, 2016, vol. 13, pp. 4–17. https://doi.org/10.1016/j.ancene.2016.01.002

    Article  Google Scholar 

  3. Bonanno, G. and Orlando-Bonaca, M., Ten inconvenient questions about plastics in the sea, Environ. Sci. Policy, 2018, vol. 85, pp. 146–154. https://doi.org/10.1016/j.envsci.2018.04.005

    Article  Google Scholar 

  4. Galloway, T.S., Cole, M., and Lewis, C., Interactions of microplastic debris throughout the marine ecosystem, Nat. Ecol. Evol., 2017, vol. 1, p. 0116. https://doi.org/10.1038/s41559-017-0116

  5. Marine Anthropogenic Litter, Bergmann, M., Gutow, L., and Klages, M., Eds., Berlin: Springer, 2015.

    Google Scholar 

  6. Chae, Y. and An, Y.-J., Effects of micro- and nanoplastics on aquatic ecosystems: Current research trends and perspectives, Mar. Pollut. Bull., 2017, vol. 124, no. 2, pp. 624–632. https://doi.org/10.1016/j.marpolbul.2017.01.070

    Article  CAS  PubMed  Google Scholar 

  7. de Sá, L.C., Oliveira, M., Ribeiro, F., et al., Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future?, Sci. Tot. Environ., 2018, vol. 645, pp. 1029–1039. https://doi.org/10.1016/j.scitotenv.2018.07.207

    Article  CAS  Google Scholar 

  8. de Souza Machado, A.A., Kloas, W., Zarfl, C., et al., Microplastics as an emerging threat to terrestrial ecosystems, Global Change Biol., 2018, vol. 24, no. 4, pp. 1405–1416. https://doi.org/10.1111/gcb.14020

    Article  Google Scholar 

  9. He, D., Luo, Y., Lu, S., et al., Microplastics in soils: Analytical methods, pollution characteristics and ecological risks, Trends Anal. Chem., 2018, vol. 109, pp. 163–172. https://doi.org/10.1016/j.trac.2018.10.006

    Article  CAS  Google Scholar 

  10. Horton, A.A., Walton, A., Spurgeon, D.J., et al., Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities, Sci. Tot. Environ., 2017, vol. 586, pp. 127–141. https://doi.org/10.1016/j.scitotenv.2017.01.190

    Article  CAS  Google Scholar 

  11. Peng, J., Wang, J., and Cai, L., Current understanding of microplastics in the environment: Occurrence, fate, risks, and what we should do, Integr. Environ. Assess. Manag., 2017, vol. 13, no. 3, pp. 476–482.

    Article  Google Scholar 

  12. Kemmitt, S.J., Lanyon, C.V., Waite, I.S., et al., Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass: A new perspective, Soil Biol. Biochem., 2008, vol. 40, no. 1, pp. 61–73. https://doi.org/10.1016/j.soilbio.2007.06.021

    Article  CAS  Google Scholar 

  13. Swift, M.J., Heal, O.W., and Anderson, J.M., Decomposition in Terrestrial Ecosystems, Oxford: Blackwell, 1979, vol. 5.

    Google Scholar 

  14. Filser, J., Faber, J.H., Tiunov, A.V., et al., Soil fauna: Key to new carbon models, Soil, 2016, vol. 2, no. 4, pp. 565–582. https://doi.org/10.5194/soil-2-565-2016

    Article  CAS  Google Scholar 

  15. Byzov, B.A., Zoomikrobnye vzaimodeistviya v pochve (Zoomicrobial Relationships in the Soil), Moscow: GEOS, 2005.

  16. Striganova, B.R., Locomotory and Trophic Activity of Invertebrates as a Factor of Soil Structure Formation, Euras. Soil Sci., 2000, vol. 33, no. 10, pp. 1094–1101.

    Google Scholar 

  17. Striganova, B.R., Pitanie pochvennykh saprofagov (Nutrition of Soil Saprophages), Moscow: Nauka, 1980.

  18. Ryberg, M.W., Laurent, A., and Hauschild, M., UN Environment: Mapping of Global Plastics Value Chain and Plastics Losses to the Environment, with a Particular Focus on Marine Environment, Nairobi, Kenya: United Nations Environment Programme, 2018.

    Google Scholar 

  19. Yvonne, S., Conservation of Plastics: Materials Science, Degradation and Preservation, Slovenia: Butterworth-Heinemann, 2008.

    Google Scholar 

  20. Crawford, C.B. and Quinn, B., in Microplastic Pollutants, Crawford, C.B. and Quinn, B, Eds., Elsevier, 2017, pp. 101–130.

    Google Scholar 

  21. Arthur, C., Baker, J., and Bamford, H., Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris, September,2008, NOAA Technical Memorandum NOS-OR&R-30, 2009, pp. 9–11.

  22. Dris, R., Gasperi, J., Rocher, V., et al., Microplastic contamination in an urban area: A case study in Greater Paris, Environ. Chem., 2015, vol. 12, no. 5, pp. 592–599. https://doi.org/10.1071/en14167

    Article  CAS  Google Scholar 

  23. Blasing, M. and Amelung, W., Plastics in soil: Analytical methods and possible sources, Sci. Tot. Environ., 2018, vol. 612, pp. 422–435. https://doi.org/10.1016/j.scitotenv.2017.08.086

    Article  CAS  Google Scholar 

  24. Barnes, D.K., Galgani, F., Thompson, R.C., and Barlaz, M., Accumulation and fragmentation of plastic debris in global environments, Philos. Trans. R. Soc. Lond. B, 2009, vol. 364, pp. 1985–1998. https://doi.org/10.1098/rstb.2008.0205

    Article  CAS  Google Scholar 

  25. Andrady, A.L., Plastics and Environmental Sustainability: Fact and Fiction, Wiley, 2015.

    Book  Google Scholar 

  26. Eerkes-Medrano, D., Thompson, R.C., and Aldridge, D.C., Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs, Water Res., 2015, vol. 75, pp. 63–82. https://doi.org/10.1016/j.watres.2015.02.012

    Article  CAS  PubMed  Google Scholar 

  27. Chae, Y. and An, Y.-J., Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review, Environ. Pollut., 2018, vol. 240, pp. 387–395. https://doi.org/10.1016/j.envpol.2018.05.008

    Article  CAS  PubMed  Google Scholar 

  28. Rillig, M.C. and Bonkowski, M., Microplastic and soil protists: A call for research, Environ. Pollut., 2018, vol. 241, pp. 1128–1131. https://doi.org/10.1016/j.envpol.2018.04.147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dris, R., Gasperi, J., Mirande, C., et al., A first overview of textile fibers, including microplastics, in indoor and outdoor environments, Environ. Pollut., 2017, vol. 221, pp. 453–458. https://doi.org/10.1016/j.envpol.2016.12.013

    Article  CAS  PubMed  Google Scholar 

  30. Rezaei, M., Riksen, M.J., Sirjani, E., et al., Wind erosion as a driver for transport of light density microplastics, Sci. Tot. Environ., 2019, vol. 669, pp. 273–281.

    Article  CAS  Google Scholar 

  31. Ali, M.I., Ahmed, S., Robson, G., et al., Isolation and molecular characterization of polyvinyl chloride (PVC) plastic degrading fungal isolates, J. Basic Microbiol., 2014, vol. 54, no. 1, pp. 18–27. https://doi.org/10.1002/jobm.201200496

    Article  CAS  PubMed  Google Scholar 

  32. Cosgrove, L., McGeechan, P.L., Robson, G.D., and Handley, P.S., Fungal communities associated with degradation of polyester polyurethane in soil, Appl. Environ. Microbiol., 2007, vol. 73, no. 18, pp. 5817–5824. https://doi.org/10.1128/aem.01083-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Crabbe, J.R., Campbell, J.R., Thompson, L., et al., Biodegradation of a colloidal ester-based polyurethane by soil fungi, Int. Biodeter. Biodegr., 1994, vol. 33, no. 2, pp. 103–113. https://doi.org/10.1016/0964-8305(94)90030-2

    Article  Google Scholar 

  34. Otake, Y., Kobayashi, T., Asabe, H., et al., Biodegradation of low-density polyethylene, polystyrene, polyvinyl chloride, and urea formaldehyde resin buried under soil for over 32 years, J. Appl. Polym. Sci., 1995, vol. 56, no. 13, pp. 1789–1796. https://doi.org/10.1002/app.1995.070561309

    Article  CAS  Google Scholar 

  35. Hurley, R.R. and Nizzetto, L., Fate and occurrence of micro(nano)plastics in soils: Knowledge gaps and possible risks, Curr. Opin. Environ. Sci. Health, 2018, vol. 1, pp. 6–11. https://doi.org/10.1016/j.coesh.2017.10.006

    Article  Google Scholar 

  36. Rillig, M.C., Microplastic in terrestrial ecosystems and the soil?, Environ. Sci. Technol., 2012, vol. 46, pp. 6453–6454. https://doi.org/10.1021/es302011r

    Article  CAS  PubMed  Google Scholar 

  37. Corradini, F., Bartholomeus, H., Huerta-Lwanga, E., et al., Predicting soil microplastic concentration using vis-NIR spectroscopy, Sci. Tot. Environ., 2019, vol. 650, pp. 922–932. https://doi.org/10.1016/j.scitotenv.2018.09.101

    Article  CAS  Google Scholar 

  38. Qiu, Q., Tan, Z., Wang, J., et al., Extraction, enumeration and identification methods for monitoring microplastics in the environment, Estuar. Coast. Shelf Sci., 2016, vol. 176, pp. 102–109. https://doi.org/10.1016/j.ecss.2016.04.012

    Article  CAS  Google Scholar 

  39. Zhang, S., Yang, X., Gertsen, H., et al., A simple method for the extraction and identification of light density microplastics from soil, Sci. Tot. Environ., 2018, vols. 616–617, pp. 1056–1065. https://doi.org/10.1016/j.scitotenv.2017.10.213

    Article  CAS  Google Scholar 

  40. de Souza, MachadoA.A., Lau, C.W., Till, J., et al., Impacts of microplastics on the soil biophysical environment, Environ. Sci. Technol., 2018, vol. 52, no. 17, pp. 9656–9665. https://doi.org/10.1021/acs.est.8b02212

    Article  CAS  Google Scholar 

  41. Zhang, G.S., Zhang, F.X., and Li, X.T., Effects of polyester microfibers on soil physical properties: Perception from a field and a pot experiment, Sci. Tot. Environ., 2019, vol. 670, pp. 1–7. https://doi.org/10.1016/j.scitotenv.2019.03.149

    Article  CAS  Google Scholar 

  42. Harris, L.S.T. and Carrington, E., Impacts of microplastic vs. natural abiotic particles on the clearance rate of a marine mussel, Limnol. Oceanogr. Lett., 2020, vol. 5, no. 1, pp. 66–73. https://doi.org/10.1002/lol2.10120

    Article  Google Scholar 

  43. Babić, S., Barišić, J., Bielen, A., et al., Multilevel ecotoxicity assessment of environmentally relevant bisphenol a concentrations using the soil invertebrate Eisenia fetida,J. Hazard. Mater., 2016, vol. 318, pp. 477–486. https://doi.org/10.1016/j.jhazmat.2016.07.017

    Article  CAS  PubMed  Google Scholar 

  44. Gaylor, M.O., Harvey, E., and Hale, R.C., Polybrominated diphenyl ether (PBDE) accumulation by earthworms (Eisenia fetida) exposed to biosolids-, polyurethane foam microparticle-, and penta-BDE-amended soils, Environ. Sci. Technol., 2013, vol. 47, no. 23, pp. 13831–13839. https://doi.org/10.1021/es403750a

    Article  CAS  PubMed  Google Scholar 

  45. Avio, C.G., Gorbi, S., and Regoli, F., Plastics and microplastics in the oceans: From emerging pollutants to emerged threat, Mar. Environ. Res., 2017, vol. 128, pp. 2–11. https://doi.org/10.1016/j.marenvres.2016.05.012

    Article  CAS  PubMed  Google Scholar 

  46. Engler, R.E., The complex interaction between marine debris and toxic chemicals in the ocean, Environ. Sci. Technol., 2012, vol. 46, no. 22, pp. 12302–12315. https://doi.org/10.1021/es3027105

    Article  CAS  PubMed  Google Scholar 

  47. Teuten, E.L., Rowland, S.J., Galloway, T.S., and Thompson, R.C., Potential for plastics to transport hydrophobic contaminants, Environ. Sci. Technol., 2007, vol. 41, no. 22, pp. 7759–7764. https://doi.org/10.1021/es071737s

    Article  CAS  PubMed  Google Scholar 

  48. Hodson, M.E., Duffus-Hodson, C.A., Clark, A., et al., Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates, Environ. Sci. Technol., 2017, vol. 51, no. 8, pp. 4714–4721. https://doi.org/10.1021/acs.est.7b00635

    Article  CAS  PubMed  Google Scholar 

  49. Kiyama, Y., Miyahara, K., and Ohshima, Y., Active uptake of artificial particles in the nematode Caenorhabditis elegans,J. Exp. Biol., 2012, vol. 215, no. 7, pp. 1178–1183. https://doi.org/10.1242/jeb.067199

    Article  PubMed  Google Scholar 

  50. Lei, L., Wu, S., Lu, S., et al., Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans,Sci. Tot. Environ., 2018, vol. 619, pp. 1–8. https://doi.org/10.1016/j.scitotenv.2017.11.103

    Article  CAS  Google Scholar 

  51. Lei, L., Liu, M., Song, Y., et al., Polystyrene (nano) microplastics cause size-dependent neurotoxicity, oxidative damage and other adverse effects in Caenorhabditis elegans,Environ. Sci. Nano, 2018, vol. 5, no. 8, pp. 2009-2020. https://doi.org/10.1039/c8en00412a

    Article  CAS  Google Scholar 

  52. Füser, H., Species-specific and particle-size-dependent ingestion of microplastics of laboratory cultures and artificially assembled and natural nematode communities, in Building Bridges: Micro-, Meso- and Macrofauna Processes across Systems, Göottingen, 2019, p. 28.

  53. Müller, M.-T., Responses of nematodes to microplastic exposure: Direct or indirect effects?, in Building Bridges: Micro-, Meso- and Macrofauna Processes across Systems, Göottingen, 2019, p. 27.

  54. Lee, K.W., Shim, W.J., Kwon, O.Y., and Kang, J.H., Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicus,Environ. Sci. Technol., 2013, vol. 47, no. 19, pp. 11278–11283. https://doi.org/10.1021/es401932b

    Article  CAS  PubMed  Google Scholar 

  55. Jeong, C.B., Won, E.J., Kang, H.M., et al., Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the monogonont rotifer (Brachionus koreanus), Environ. Sci. Technol., 2016, vol. 50, no. 16, pp. 8849–8857. https://doi.org/10.1021/acs.est.6b01441

    Article  CAS  PubMed  Google Scholar 

  56. Zhao, L., Qu, M., Wong, G., and Wang, D., Transgenerational toxicity of nanopolystyrene particles in the range of μg L−1 in the nematode Caenorhabditis elegans,Environ. Sci. Nano, 2017, vol. 4, no. 12, pp. 2356–2366. https://doi.org/10.1039/c7en00707h

    Article  CAS  Google Scholar 

  57. Ju, H., Zhu, D., and Qiao, M., Effects of polyethylene microplastics on the gut microbial community, reproduction and avoidance behaviors of the soil springtail, Folsomia candida,Environ. Pollut., 2019, vol. 247, pp. 890–897. https://doi.org/10.1016/j.envpol.2019.01.097

    Article  CAS  PubMed  Google Scholar 

  58. Zhu, D. and Chen, Q.L., An, X.L. et al., Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition, Soil Biol. Biochem., 2018, vol. 116, pp. 302–310. https://doi.org/10.1016/j.soilbio.2017.10.027

    Article  CAS  Google Scholar 

  59. Maass, S., Daphi, D., Lehmann, A., and Rillig, M.C., Transport of microplastics by two collembolan species, Environ. Pollut., 2017, vol. 225, pp. 456–459. https://doi.org/10.1016/j.envpol.2017.03.009

    Article  CAS  PubMed  Google Scholar 

  60. Selonen, S., Dolar, A., Kokalj, A.J., et al., Exploring the impacts of plastics in soil: The effects of polyester textile fibers on soil invertebrates, Sci. Tot. Environ., 2020, vol. 700, 134451. https://doi.org/10.1016/j.scitotenv.2019.134451

    Article  CAS  Google Scholar 

  61. Kim, S.W. and An, Y.-J., Soil microplastics inhibit the movement of springtail species, Environ. Int., 2019, vol. 126, pp. 699–706. https://doi.org/10.1016/j.envint.2019.02.067

    Article  PubMed  Google Scholar 

  62. Kokalj, A.J., Horvat, P., Skalar, T., and Kržan, A., Plastic bag and facial cleanser derived microplastic do not affect feeding behaviour and energy reserves of terrestrial isopods, Sci. Tot. Environ., 2018, vol. 615, pp. 761–766.https://doi.org/10.1016/j.scitotenv.2017.10.020

    Article  CAS  Google Scholar 

  63. Zhu, B.-K., Fang, Y.-M., Zhu, D., et al., Exposure to nanoplastics disturbs the gut microbiome in the soil oligochaete Enchytraeus crypticus,Environ. Pollut., 2018, vol. 239, pp. 408–415. https://doi.org/10.1016/j.envpol.2018.04.017

    Article  CAS  PubMed  Google Scholar 

  64. Cao, D., Wang, X., Luo, X., et al., Effects of polystyrene microplastics on the fitness of earthworms in an agricultural soil, in IOP Conference Series: Earth and Environmental Science, vol. 61, IOP Publ., 2017, 012148. https://doi.org/10.1088/1755-1315/61/1/012148

  65. Huerta-Lwanga, E., Gertsen, H., Gooren, H., et al., Microplastics in the terrestrial ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae), Environ. Sci. Technol., 2016, vol. 50, no. 5, pp. 2685–2691. https://doi.org/10.1021/acs.est.5b05478

    Article  CAS  PubMed  Google Scholar 

  66. Prendergast-Miller, M.T., Katsiamides, A., Abbass, M., et al., Polyester-derived microfibre impacts on the soil-dwelling earthworm Lumbricus terrestris,Environ. Pollut., 2019, vol. 251, pp. 453–459. https://doi.org/10.1016/j.envpol.2019.05.037

    Article  CAS  PubMed  Google Scholar 

  67. Huerta-Lwanga, E., Gertsen, H., Gooren, H., et al., Incorporation of microplastics from litter into burrows of Lumbricus terrestris,Environ. Pollut., 2017, vol. 220, pp. 523–531. https://doi.org/10.1016/j.envpol.2016.09.096

    Article  CAS  PubMed  Google Scholar 

  68. Rodriguez-Seijo, A., Lourenco, J., Rocha-Santos, T.A.P., et al., Histopathological and molecular effects of microplastics in Eisenia andrei Bouché, Environ. Pollut., 2017, vol. 220, pp. 495–503. .https://doi.org/10.1016/j.envpol.2016.09.092

    Article  CAS  PubMed  Google Scholar 

  69. Rodriguez-Seijo, A., Costa, J.P., Rocha-Santos, T., et al., Oxidative stress, energy metabolism and molecular responses of earthworms (Eisenia fetida) exposed to low-density polyethylene microplastics, Environ. Sci. Pollut. Res., 2018, vol. 25, no. 33, pp. 33599–33610. https://doi.org/10.1007/s11356-018-3317-z

    Article  CAS  Google Scholar 

  70. Stamatiadis, S. and Dindal, D.L., Coprophilous mite communities as affected by concentration of plastic and glass particles, Exp. Appl. Acarol., 1990, vol. 8, pp. 1–12. https://doi.org/10.1007/BF01193377

    Article  CAS  PubMed  Google Scholar 

  71. Zhu, D., Bi, Q.-F., Xiang, Q., et al., Trophic predator–prey relationships promote transport of microplastics compared with the single Hypoaspis aculeifer and Folsomia candida,Environ. Pollut., 2018, vol. 235, pp. 150–154. https://doi.org/10.1016/j.envpol.2017.12.058

    Article  CAS  PubMed  Google Scholar 

  72. Rillig, M.C., Ziersch, L., and Hempel, S., Microplastic transport in soil by earthworms, Sci. Rep., 2017, vol. 7, no. 1, 1362. https://doi.org/10.1038/s41598-017-01594-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schulmann, O.P. and Tiunov, A.V., Leaf litter fragmentation by the earthworm Lumbricus terrestris L., Pedobiologia, 1999, vol. 43, no. 5, pp. 453–458.

    Google Scholar 

  74. Huerta-Lwanga, E., Thapa, B., Yang, X., et al., Decay of low-density polyethylene by bacteria extracted from earthworm’s guts: A potential for soil restoration, Sci. Tot. Environ., 2018, vol. 624, pp. 753–757. https://doi.org/10.1016/j.scitotenv.2017.12.144

    Article  CAS  Google Scholar 

  75. Zhang, L., Sintim, H.Y., Bary, A.I., et al., Interaction of Lumbricus terrestris with macroscopic polyethylene and biodegradable plastic mulch, Sci. Tot. Environ., 2018, vol. 635, pp. 1600–1608. https://doi.org/10.1016/j.scitotenv.2018.04.054

    Article  CAS  Google Scholar 

  76. Albertsson, A.-C., Andersson, S.O., and Karlsson, S., The mechanism of biodegradation of polyethylene, Polym. Degrad. Stab., 1987, vol. 18, no. 1, pp. 73–87. https://doi.org/10.1016/0141-3910(87)90084-X

    Article  CAS  Google Scholar 

  77. Gewert, B., Plassmann, M.M., and MacLeod, M., Pathways for degradation of plastic polymers floating in the marine environment, Environ. Sci., 2015, vol. 17, no. 9, pp. 1513–1521. https://doi.org/10.1039/C5EM00207A

    Article  CAS  Google Scholar 

  78. Govorushko, S., Economic and ecological importance of termites: A global review, Entomol. Sci., 2019, vol. 22, no. 1, pp. 21–35. https://doi.org/10.1111/ens.12328

    Article  Google Scholar 

  79. Tsunoda, K., Rosenblat, G., and Dohi, K., Laboratory evaluation of the resistance of plastics to the subterranean termite Coptotermes formosanus (Blattodea: Rhinotermitidae), Int. Biodeter. Biodegr., 2010, vol. 64, no. 3, pp. 232–237. https://doi.org/10.1016/j.ibiod.2009.12.008

    Article  CAS  Google Scholar 

  80. Lenz, M., Creffield, J.W., Evans, T.A., et al., Resistance of polyamide and polyethylene cable sheathings to termites in Australia, Thailand, USA, Malaysia and Japan: A comparison of four field assessment methods, Int. Biodeter. Biodegr., 2012, vol. 66, no. 1, pp. 53–62. https://doi.org/10.1016/j.ibiod.2011.11.001

    Article  Google Scholar 

  81. Lenz, M., Kard, B., Creffield, J.W., et al., Ability of field populations of Coptotermes spp., Reticulitermes flavipes, and Mastotermes darwiniensis (Isoptera: Rhinotermitidae; Mastotermitidae) to damage plastic cable sheathings, J. Econ. Entomol., 2013, vol. 106, no. 3, pp. 1395–1403. https://doi.org/10.1603/EC12514

    Article  PubMed  Google Scholar 

  82. Yang, Y., Yang, J., Wu, W.-M., et al., Biodegradation and mineralization of polystyrene by plastic-eating mealworms: 1. Chemical and physical characterization and isotopic tests, Environ. Sci. Technol., 2015, vol. 49, no. 20, pp. 12080–12086. https://doi.org/10.1021/acs.est.5b02661

    Article  CAS  PubMed  Google Scholar 

  83. Yang, Y., Yang, J., Wu, W.-M., et al., Biodegradation and mineralization of polystyrene by plastic-eating mealworms: 2. Role of gut microorganisms, Environ. Sci. Technol., 2015, vol. 49, no. 20, pp. 12087–12093. https://doi.org/10.1021/acs.est.5b02663

    Article  CAS  PubMed  Google Scholar 

  84. Bombelli, P., Howe, C.J., and Bertocchini, F., Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella,Curr. Biol., 2017, vol. 27, no. 8, pp. R292–R293. https://doi.org/10.1016/j.cub.2017.02.060

    Article  CAS  PubMed  Google Scholar 

  85. Yang, J., Yang, Y., Wu, W.-M., et al., Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms, Environ. Sci. Technol., 2014, vol. 48, no. 23, pp. 13776–13784. https://doi.org/10.1021/es504038a

    Article  CAS  PubMed  Google Scholar 

  86. Weber, C., Pusch, S., and Opatz, T., Polyethylene bio-degradation by caterpillars?, Curr. Biol., 2017, vol. 27, no. 15, pp. R744–R745. https://doi.org/10.1016/j.cub.2017.07.004

    Article  CAS  PubMed  Google Scholar 

  87. Wood, C.T. and Zimmer, M., Can terrestrial isopods (Isopoda: Oniscidea) make use of biodegradable plastics?, Appl. Soil. Ecol., 2014, vol. 77, pp. 72–79. https://doi.org/10.1016/j.apsoil.2014.01.009

    Article  Google Scholar 

  88. Sforzini, S., Oliveri, L., Chinaglia, S., and Viarengo, A., Application of biotests for the determination of soil ecotoxicity after exposure to biodegradable plastics, Front. Environ. Sci., 2016, vol. 4, p. 68. https://doi.org/10.3389/fenvs.2016.00068

    Article  Google Scholar 

  89. Huerta-Lwanga, E., Mendoza Vega, J., Ku Quej, V., et al., Field evidence for transfer of plastic debris along a terrestrial food chain, Sci. Rep., 2017, vol. 7, no. 1, 14071. https://doi.org/10.1038/s41598-017-14588-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Anbumani, S. and Kakkar, P., Ecotoxicological effects of microplastics on biota: A review, Environ. Sci. Pollut. Res., 2018, vol. 25, no. 15, pp. 14373–14396. https://doi.org/10.1007/s11356-018-1999-x

    Article  CAS  Google Scholar 

  91. Barboza, L.G.A., Cozar, A., Gimenez, B.C.G., et al., Macroplastics pollution in the marine environment, in World Seas: An Environmental Evaluation, Academic Press, 2019, pp. 305–328. https://doi.org/10.1016/B978-0-12-805052-1.00019-X

    Book  Google Scholar 

  92. Thiel, M. and Gutow, L., The ecology of rafting in the marine environment: 1. The floating substrata, Oceanogr. Mar. Biol., 2005, vol. 42, pp. 181–264. https://doi.org/10.1201/9780203507810.ch6

    Article  Google Scholar 

  93. Thiel, M. and Gutow, L., The ecology of rafting in the marine environment: 2. The rafting organisms and community, Oceanogr. Mar. Biol., 2005, vol. 42, pp. 289–428. https://doi.org/10.1201/9781420037449-9

    Article  Google Scholar 

  94. Zettler, E.R., Mincer, T.J., and Amaral-Zettler, L.A., Life in the “plastisphere”: Microbial communities on plastic marine debris, Environ. Sci. Technol., 2013, vol. 47, no. 13, pp. 7137–7146. https://doi.org/10.1021/es401288x

    Article  CAS  PubMed  Google Scholar 

  95. Lusher, A., Microplastics in the marine environment: Distribution, interactions and effects, in Marine Anthropogenic Litter, Bergmann, M., Gutow, L., and Klages, M., Eds., Springer, 2015, pp. 245–307. https://doi.org/10.1007/978-3-319-16510-3_10

    Book  Google Scholar 

  96. Gregory, M.R., Environmental implications of plastic debris in marine settings: Entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions, Philos. Trans. R. Soc. Lond. B, 2009, vol. 364, pp. 2013–2025. https://doi.org/10.1098/rstb.2008.0265

    Article  Google Scholar 

  97. Sutherland, W.J., Bardsley, S., Bennun, L., et al., A horizon scan of global conservation issues for 2010, Trends Ecol. Evol., 2011, vol. 26, no. 1, pp. 10–16.

    Article  Google Scholar 

  98. Moore, C.J., Moore, S.L., Leecaster, M.K., and Weisberg, S.B., A comparison of plastic and plankton in the North Pacific Central Gyre, Mar. Pollut. Bull., 2001, vol. 42, no. 12, pp. 1297–1300. https://doi.org/10.1016/S0025-326X(01)00114-X

    Article  CAS  PubMed  Google Scholar 

  99. Wright, S.L., Thompson, R.C., and Galloway, T.S., The physical impacts of microplastics on marine organisms: A review, Environ. Pollut., 2013, vol. 178, pp. 483–492. https://doi.org/10.1016/j.envpol.2013.02.031

    Article  CAS  PubMed  Google Scholar 

  100. Eerkes-Medrano, D. and Thompson, R., in Microplastic Contamination in Aquatic Environments: An Emerging Matter, Zeng, E.Y., Ed., Amsterdam: Elsevier, 2018, pp. 95–132.

    Google Scholar 

  101. Reisser, J., Shaw, J., Hallegraeff, G., et al., Millimeter-sized marine plastics: A new pelagic habitat for microorganisms and invertebrates, PLoS One, 2014, vol. 9, no. 6, e100289. https://doi.org/10.1371/journal.pone.0100289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bhattacharya, P., Lin, S., Turner, J.P., and Ke, P.C., Physical adsorption of charged plastic nanoparticles affects algal photosynthesis, J. Phys. Chem. C, 2010, vol. 114, no. 39, pp. 16556–16561. https://doi.org/10.1021/jp1054759

    Article  CAS  Google Scholar 

  103. Duis, K. and Coors, A., Microplastics in the aquatic and terrestrial environment: Sources (with a specific focus on personal care products), fate and effects, Environ. Sci. Eur., 2016, vol. 28, no. 1, p. 2. https://doi.org/10.1186/s12302-015-0069-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Auta, H.S., Emenike, C.U., and Fauziah, S.H., Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions, Environ. Int., 2017, vol. 102, pp. 165–176. https://doi.org/10.1016/j.envint.2017.02.013

    Article  CAS  PubMed  Google Scholar 

  105. Koehler, A., Cellular fate of organic compounds in marine invertebrates, Comp. Biochem. Phys. A, 2010, vol. 157, no. 1, p. S8. https://doi.org/10.1016/j.cbpa.2010.06.020

    Article  Google Scholar 

  106. von Moos, N., Burkhardt-Holm, P., and Kohler, A., Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure, Environ. Sci. Technol., 2012, vol. 46, no. 20, pp. 11327–11335. https://doi.org/10.1016/j.cbpa.2010.06.020

    Article  CAS  PubMed  Google Scholar 

  107. Paul-Pont, I., Lacroix, C., Fernandez, C.G., et al., Exposure of marine mussels Mytilus spp. to polystyrene microplastics: Toxicity and influence on fluoranthene bioaccumulation, Environ. Pollut., 2016, vol. 216, pp. 724–737. https://doi.org/10.1016/j.envpol.2016.06.039

    Article  CAS  PubMed  Google Scholar 

  108. Zhu, D., Ke, X., Christie, P., and Zhu, Y.-G., Rejoinder to “Comments on Zhu et al. (2018) Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition” [Soil Biol. Biochem. 116, 302–310], Soil Biol. Biochem., 2018, vol. 124, pp. 275–276. https://doi.org/10.1016/j.soilbio.2018.05.030

    Article  CAS  Google Scholar 

  109. Shah, A.A., Hasan, F., Hameed, A., and Ahmed, S., Biological degradation of plastics: A comprehensive review, Biotechnol. Adv., 2008, vol. 26, no. 3, pp. 246–265. https://doi.org/10.1016/j.biotechadv.2007.12.005

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 18-29-05076 mk).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Leonov.

Additional information

Translated by D. Zabolotny

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonov, V.D., Tiunov, A.V. Interaction of Invertebrates and Synthetic Polymers in Soil: A Review. Russ J Ecol 51, 503–517 (2020). https://doi.org/10.1134/S1067413620060041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413620060041

Keywords:

Navigation