Skip to main content
Log in

The Law of Homologous Series in Variation for Systematics

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The article discusses the significance of Vavilov’s law of homologous series in variability for plant systematics. According to this law, the Linnean species was proposed to be considered as a dynamic system of ecological and geographical races—hereditary forms, all of them are variable across time and space under the influence of environmental factors and after mutations and recombination of alleles during hybridization in either nature or experiments. In nature, species can differ in many traits, but the spectrum of potential variability of morphological and physiological characters hidden in the genotype is almost the same in related species. Related genera and species differ only in a few significant characters (so called, radicals); they are the only taxonomically significant characters. Radicals and the genetic affinity of species can be revealed in experiments by disclosing the latent intraspecific phenotypic and genetic diversity of the species. The farther the species are from each other, the less overlap the variability spectra of their phenotypes and genotypes. It took time and the emergence of new effective approaches for assessing the genetic affinity of plants (such as karyosystematics, immunosystematics, GISH, and molecular phylogeny), to put at the service of plant taxonomy not just the study of morphological similarity but the study of characters of relatedness. The current stage of the study of parallel genotypic variability in plants is characterized by the fact that, as a result of advances in molecular phylogeny and comparative genomics, there is a real opportunity to study the phenomenon of morphologically indistinguishable but genetically heterogeneous (cryptic) species and to study the degree of genetic diversity and kinship of natural populations of morphologically polymorphic species with wide area of distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Euralia—now Hypolimnas—a genus of diurnal butterflies from the Nymphalidae family. The essence of Pennett’s argument boiled down to the fact that experiments on breeding natural forms of the genus Euralia showed that both morphs can be born by one female [37, 38].

  2. In the early 1930s, the director of the Botanical Institute of Academy of Sciences of USSR B.A. Keller commissioned a cytological study by N.N. Titova: “By the Botanical Institute of the Academy of Sciences on the initiative of Acad. B.A. Keller, it was suggested that I conduct a cytological study of some of the ephemeral plants collected by the Elton Lake expedition in 1932 and 1933. The main purpose of this study was to find a “plant fruit fly,” i.e., such an object with which it would be possible to conduct genetic research at the same rapid pace as Drosophila allows. ❬…❭ To facilitate the study of linkage groups, it [object] must have a small number of chromosomes. ❬…❭ As a result of this karyological analysis of all the listed species, it can be concluded that the only object suitable for the set goal is Arabidopsis thaliana with 2n = 6” [59]. In fact, in A. thaliana, 2n = 10 [60].

REFERENCES

  1. Vavilov, N.I., The law of homologous series in variation, J. Genet., 1922, vol. 12, pp. 47—89.

    Article  Google Scholar 

  2. Vavilov, N.I., Zakon gomologicheskikh ryadov v nasledstvennoi izmenchivosti (The Law of Homological Series in Hereditary Variation), Moscow: OGIZ-Selkhozgiz, 1935.

  3. Vavilov, N.I., Linneevskii vid kak sistema (The Linnean Species as a System), Moscow: Gos. Izd. S-kh. Kolkhozn. Koop. Lit., 1931.

  4. Sinskaya, E.N., To the knowledge of patterns in the variability of the Cruciferae family, Tr. Prikl. Bot.,Genet. Sel., 1928, vol. 133, pp. 15—89.

    Google Scholar 

  5. Sinskaya, E.N., Vidoobrazovanie u lyutserny i drugikh rastenii (Speciation in Alfalfa and Other Plants), Leningrad: Akad. S.-kh. Nauk im. V.I. Lenina, 1935.

  6. Troitskaya, O.V., Sistematika rastenii (Plant Systematics), Leningrad: Sel’khozgiz, 1935.

  7. Flyaksberger, K.A., Pshenitsy (Wheats), Moscow: Sel’khozgiz, 1938.

    Google Scholar 

  8. Stebbins, G.L., Jr., Comments on literature in plant evolution, Evolution, 1952, vol. 6, no. 1, pp. 131—133. https://doi.org/10.1111/j.1558-5646.1952.tb02820.x

    Article  Google Scholar 

  9. Flora SSSR (Flora of the USSR), Komarov, V.L., Ed., vols. 1—30. Leningrad: Akad. Nauk SSSR, 1934–1964.

  10. Komarov, V.L., Uchenie o vide u rastenii (stranitsa iz istorii biologii) (The Doctrine of the Species in Plants (a Page from the History of Biology)), Moscow: Akad. Nauk SSSR, 1940.

  11. Yuzepchuk, S.V., Komarov concept of the species, its historical development and reflection in the “Flora of the USSR”, Problema vida v botanike (Species Problem in Botany), Baranov, P.A., Ed., Moscow: Akad. Nauk SSSR, 1958, vol. 1, pp. 130—204.

    Google Scholar 

  12. Popov, I.Yu., Periodicheskie sistemy i periodicheskii zakon v biologii (Periodic Systems and the Periodic Law in Biology), St. Petersburg: KMK, 2008.

  13. Berg, L.S., Is evolution random or determined by law?, in Genetika i evolyutsiya: izbrannye trudy (Genetics and Evolution: Selected Papers), Novosibirsk: Nauka, 1993, pp. 230—281.

    Google Scholar 

  14. Linnaeus, C., Philosophia Botanica, Kiesewetter: Stockholmiæ, 1751.

  15. Patterson, C., Morphological characters and homology, in Problems in Phylogenetic Reconstruction, Joysey, K.A. and Friday, A.E., Eds., London: Academic, 1982, pp. 21—74.

    Google Scholar 

  16. Pavlinov, I.Ya. and Lyubarskii, G.Yu., Biologicheskaya sistematika: evolyutsiya idei (Biological Taxonomy: Evolution of Ideas), Moscow: KMK, 2011.

  17. Michener, C.D. and Sokal, R.R., A quantitative approach to a problem in classification, Evolution, 1957, vol. 11, pp. 130—162.

    Article  PubMed Central  Google Scholar 

  18. Cain, A.J. and Harrison, G.A., An analysis of the taxonomist’s judgment of affinity, Proc. Zool. Soc. Lond., 1958, vol. 131, pp. 85—98.

    Article  Google Scholar 

  19. Shatalkin, A.I., Taksonomiya: osnovaniya, printsipy i pravila (Taxonomy: Grounds, Principles and Rules), Moscow: KMK, 2012.

  20. Sinskaya, E.N., Dinamika vida (Species Dynamics), Moscow: Selkhozgiz, 1948.

  21. Dorofeev, V.F., Significance of the law of homologous series in hereditary variation for modern introduction and breeding, in Vavilovskoe nasledie v sovremennoi biologii (Vavilov’s Legacy in Modern Biology), Moscow: Nauka, 1989, pp. 5—14.

  22. Burenin, V.I., Artem’eva, A.M., Khrapalova, I.A., et al., Patterns of hereditary variation in vegetable and melon crops, Tr. Prikl. Bot.,Genet. Sel., 2007, vol. 164, pp. 164—179.

    Google Scholar 

  23. Konon, N.T., Khazieva, F.M., Stanishevskaya, I.E., et al., Results of 80 years of breeding work with medicinal and aromatic crops, Vopr. Biol.,Med. Farm. Khim., 2012, vol. 10, no. 1, pp. 17—22.

    Google Scholar 

  24. Goncharov, N.P., Sravnitel’naya genetika pshenits i ikh sorodichei (Comparative Genetics of Wheats and Their Relatives), Novosibirsk: Geo, 2012, 2nd ed.

    Google Scholar 

  25. Terent’ev, P.V., In defense of the species as a finite taxon, Zool. Zh., 1968, vol. 47, no. 6, pp. 887—899.

    Google Scholar 

  26. Kamelin, R.V., Lektsii po sistematike rastenii: glavy teoreticheskoi sistematiki rastenii (Lectures on Plant Taxonomy: Theoretical Plant Taxonomy Chapters), Barnaul: Azbuka, 2004.

  27. Lotsy, J.P., Evolution by Means of Hybridization, Hague: Marinus Nijhoff, 1916.

  28. Dobzhansky, T., Die genetischen Grundlagen der Artbildung, Jena: Gustav Fischer, 1939.

    Google Scholar 

  29. Hiesey, W.M., Clausen, J., and Keck, D.D., Relations between climate and intraspecific variation in plants, Am. Nat., 1942, vol. 76, pp. 5—22.

    Article  Google Scholar 

  30. Rozanova, M.A., About biological isolation and “cryptic” species, Bot. Zh., 1940, vol. 25, nos. 4—5, pp. 304—309.

    Google Scholar 

  31. Sinskaya, E.N., K poznaniyu vidov v ikh dinamike i vzaimootnosheniyakh s rastitel’nym pokrovom (To the Knowledge of Species in Their Dynamics and Relationships with Vegetation), Leningrad, 1931.

    Google Scholar 

  32. Grant, V., Plant Speciation, New York: Columbia Univ. Press, 1981, 2nd ed.

    Book  Google Scholar 

  33. Punnet, R.G., Mendelism, Cambridge: Bowes and Bowes, 1905.

    Google Scholar 

  34. Mayr, E., Systematics and the Origin of Species, New York: Columbia Univ. Press, 1941.

    Google Scholar 

  35. Levin, D.A., The long wait for hybrid sterility in flowering plants, New Phytol., 2012, vol. 196, pp. 666—670.

    Article  PubMed  Google Scholar 

  36. Rodionov, A.V., Polyploidy and interspecific hybridization in the evolution of flowering plants, Vavilovskii Zh. Genet. Sel., 2013, vol. 17, no. 4/2, pp. 916—928.

  37. Trimen, R., Mr. Alfred D. Millar’s experimental breeding from the ova of the natalian forms of the Nymphaline genus Euralia,Trans. Entomol. Soc. Lond., 1910, pp. 498—513.

  38. Poulton, E.B., Letter from professor Poulton, J. Philos., Psychol. Sci. Methods, 1912, vol. 9, no. 11, pp. 299—301.

    Google Scholar 

  39. The Plant List: a working list of all plant species. http://www.theplantlist.org/tpl1.1/search?q=Avena. Accessed June 15, 2020.

  40. Ladizinsky, G., Studies in Oats Evolution, Heidelberg: Springer-Verlag, 2012.

    Book  Google Scholar 

  41. Vorontsovskii, P.A., On the issue of homologous series of color variation in locusts, Izv. Orenb. Stan. Zashch. Rast., 1928, issue 1, pp. 27—39.

  42. Rubtzov, I.A., Phase variation in non-swarming grasshoppers, Bull. Entomol. Res., 1935, vol. 26, no. 4, pp. 499—520.

    Article  Google Scholar 

  43. Semenov-Tyan-Shanskii, A.P., Taxonomic boundaries of a species and its subdivisions: an experience of precise categorization of lower taxonomic units, Zap. Imp. Akad. Nauk, Phys.-Math. Otd., 1910, vol. 25, no. 1, pp. 1—29.

    Google Scholar 

  44. Bianki, V.L., Species and subordinate taxonomic forms, Russ. Zool. Zh., 1916, vol. 1, nos. 9—10, pp. 287—297.

    Google Scholar 

  45. Fedotova, A.A. and Goncharov, N.P., Byuro po prikladnoi botanike v gody Pervoi mirovoi voiny: sbornik dokumentov (Bureau of Applied Botany in the First World War: the Collection of Documents), St. Petersburg: Nestor-Istoriya, 2014.

  46. Dorofeev, V.F., Filatenko, A.A., Migushova, E.F., et al., Kul’turnaya flora SSSR (Cultivated Flora of the USSR), vol. 1: Pshenitsa (Wheat), Leningrad: Kolos, 1979.

  47. Rydberg, P.A., The section Tuberarium of the genus Solanum in Mexico and Central America, Bull. Torrey Bot. Club, 1924, vol. 51, no. 4, pp. 145—154.

    Article  Google Scholar 

  48. Flora Europaea, Tutin, T.G., et al., Eds., V. 1: Psilotaceae to Platanaceae, New York: Cambridge Univ. Press, 1993, 2nd ed.

  49. Tzvelev, N.K., On ecological-geographical races in the family of Grasses (Gramineae) and their taxonomic rank, Bot. Zh., 1966, vol. 51, no. 8, pp. 1099—1108.

    Google Scholar 

  50. Berg, L.S., About botanical nomenclature and about the species concept among botanists, Priroda, 1950, no. 9, pp. 30—33.

  51. Tsvelev, N.N. and Probatova, N.S., Zlaki Rossii (Grasses of Russia), Moscow: KMK, 2019.

  52. Kamelin, R.V., Speciation in flowering plants, Tr. Zool. Inst. Russ. Akad. Nauk, 2009, suppl. 1, pp. 141—149.

  53. Besnard, G., Tagmount, A., Baradat, P., et al., Molecular approach of genetic affinities between wild and ornamental Platanus,Euphytica, 2002, vol. 126, pp. 401—412.

    Article  CAS  Google Scholar 

  54. Orlova, L.V. and Egorov, A.A., On the taxonomy and geographical distribution of Finnish spruce (Picea fennica (Regel) Kom., Pinaceae), Nov. Sist. Vyssh. Rast., 2011, vol. 42, pp. 5—23.

    Google Scholar 

  55. Rodionov, A.V., Dobryakova, K.S., and Punina, E.O., Polymorphic sites in ITS1–5.8S rDNA–ITS2 region in hybridogenic genus × Elyhordeum and putative interspecific hybrids Elymus (Poaceae: Triticeae), Russ. J. Genet., 2018, vol. 54, no. 9, pp. 1025—1039. https://doi.org/10.1134/S1022795418090120

    Article  CAS  Google Scholar 

  56. Rodionov, A.V., Dobryakova, K.S., Nosov, N.N., et al. Polymorphism of ITS sequences in 35S rRNA genes in Elymus dahuricus aggregate species: two cryptic species?, Vavilovskii Zh. Genet. Sel., 2019, vol. 23, no. 3, pp. 287—295. https://doi.org/10.18699/VJ19.493

    Article  Google Scholar 

  57. Agafonov, A.V., Biosystematic study of the Elymus macrourus—E. jacutensis complex and the critical taxon E. ircutensis (Triticeae: Poaceae), Rastit. Mir Aziat. Rossii, 2008, no. 2. pp. 20—32.

  58. Kihara, H., Genomanalyse bei Triticum und Aegilops,Cytologia, 1930, vol. 1, no. 3, pp. 263—284.

    Article  Google Scholar 

  59. Titova, N.N., The search for the plant drosophila, Sov. Bot., 1935, no. 2, pp. 61—67.

  60. Bolkhovskikh, Z.V., Grif, V.G., Zakhar’eva, O.I., and Matveeva, T.S., Khromosomnye chisla tsvetkovykh rastenii (Chromosome Numbers of Flowering Plants), Leningrad: Nauka, 1969.

  61. Babcock, E.B. and Navashin, M., The genus Crepis,Bibliographia Genet., 1930, vol. 6, pp. 1—90.

    Google Scholar 

  62. Clausen, J., Keck, D.D., and Hiesey, W.M., The concept of species based on experiment, Am. J. Bot., 1939, vol. 26, pp. 103—106.

    Article  Google Scholar 

  63. Smocovitis, V.B., The “Plant Drosophila”: E.B. Babcock, the genus Crepis, and the evolution of a genetics research program at Berkeley, 1915—1947, Hist. Stud. Nat. Sci., 2009, vol. 39, pp. 300—355.

    Article  PubMed  Google Scholar 

  64. Camp, W.H., Biosystematy, Brittonia, 1951, vol. 7, pp. 113—127.

    Article  Google Scholar 

  65. Takhtajan, A.L., Biosystematics: past, present, and future, Bot. Zh., 1970, vol. 55, no. 3, pp. 331—345.

    Google Scholar 

  66. Stebbins, G.L., Biosystematics: an avenue towards understanding evolution, Taxon, 1970, vol. 19, no. 2, pp. 205—214.

    Article  Google Scholar 

  67. Delone, L.N., Comparative karyological study of several Muscari Mill. species, Zap. Kiev. O-va.Estestvoispyt., 1915, vol. 25, pp. 33—64.

    Google Scholar 

  68. Levitsky, G.A. and Kuz’mina, N.E., Karyological method in systematics and phylogenetics of the genus Festuca (subgenus Eu-Festuca), Tr. Prikl. Bot.,Genet. Sel., 1927, vol. 17, pp. 3—36.

    Google Scholar 

  69. Levitsky, G.A., Chromosome morphology and the concept of “karyotype” in taxonomy (based on the study of the Helleboreae subfamily), Tr. Prikl. Bot.,Genet. Sel., 1931, vol. 27, pp. 187—240.

    Google Scholar 

  70. Tzvelev, N.N., About the genus Colpodium Trin., Nov. Sist. Vyssh. Rast., 1964, vol. 1, pp. 5—19.

    Google Scholar 

  71. Tzvelev, N.N. and Bolkhovskikh, Z.V., About the genus Zingeria P. Smirn. and related genera of the grass family (Gramineae) (karyo-systematic study), Bot. Zh., 1965, vol. 50, no. 9, pp. 1317—1320.

    Google Scholar 

  72. Agapova, N.D., Arkharova, K.V., Vakhtina, L.I., et al., Chisla khromosom tsvetkovykh rastenii flory SSSR: Aceraceae—Menyanthaceae (Chromosome Numbers of Flowering Plants of the USSR Flora: Aceraceae—Menyanthaceae), Leningrad: Nauka, 1990.

  73. Goldblatt, P. and Lowry, P.P., The Index to Plant Chromosome Numbers (IPCN): three decades of publication by the Missouri Botanical Garden come to an end, Ann. Mo. Bot. Gard., 2011, vol. 98, pp. 226—227. https://doi.org/10.3417/2011027

    Article  Google Scholar 

  74. Shneyer, V.S., Punina, E.O., and Rodionov, A.V., Intraspecific variation of ploidy in angiosperms and its taxonomical treatment, Bot. Zh., 2018, vol. 103, no. 5, pp. 555—585. https://doi.org/10.1134/S0006813618050010

    Article  Google Scholar 

  75. Shneyer, V.S., Immunochemical method for comparing proteins in plant systematics, Bot. Zh., 1988, vol. 73, no. 8, pp. 1073—1085.

    Google Scholar 

  76. Jensen, U. and Greven, B., Serological aspects and phylogenetic relationships of the Magnoliidae, Taxon, 1984, vol. 33, pp. 563—577.

    Article  Google Scholar 

  77. Fairbrothers, D.E., Perspectives in plant serotaxonomy, Ann. Mo. Bot. Gard., 1977, vol. 64, pp. 147—160.

    Article  Google Scholar 

  78. Shneyer, V.S., A serotaxonomic study of the genus Iris s.l. (Iridaceae), Bot. Zh., 1990, vol. 75, no. 6, pp. 804—809.

    Google Scholar 

  79. Konarev, A., The genome specific grain proteins and the phylogenetic interrelation between Triticum L., Elytrigia Desf., Elymus L. and Agropyron Gaertn., Theor. Appl. Genet., 1981, vol. 59, pp. 117—121. https://doi.org/10.1007/BF02909204

    Article  CAS  PubMed  Google Scholar 

  80. Klozová, E., Turková, V., Pitterová, K., and Hadačová, V., Serological comparisons of seed proteins of some representatives of the genus Allium,Biol. Plant., 1981, vol. 23, pp. 9—15.

    Article  Google Scholar 

  81. Antonov, A.S., Genosistematika rastenii (Plant Genosystematics), Moscow: Akademkniga, 2006.

  82. Mikhailova, Yu.V., Gusarova, G.L., and Brochman, C., Molecular variation and phylogeography of the moss campion Silene acaulis (L.) Jacq. (Caryophyllaceae) in the north of Europe and the Svalbard archipelago, Ekol. Genet., 2010, vol. 8, no. 3, pp. 52—60.

    Google Scholar 

  83. Zelenin, A.V., Rodionov, A.V., Bolsheva, N.L., et al., Genome: origins and evolution of the term, Mol. Biol. (Moscow), 2016, vol. 50, no. 4, pp. 542—550. https://doi.org/10.1134/S0026893316040178

    Article  CAS  Google Scholar 

  84. Shneyer, V.S. and Kotseruba, V.V., Cryptic species in plants and their detection by genetic differentiation between populations, Ekol. Genet., 2014, vol. 12, no. 3, pp. 12—31.

    Google Scholar 

  85. Levitsky, G.A., The karyotypes of some pairs of related plant forms, Bot. Zh. USSR, 1940, vol. 25, nos. 4—5, pp. 292—296.

    Google Scholar 

  86. Rodionov, A.V., Kim, E.S., Nosov, N.N., et al., Molecular-phylogenetic study of species of the genus Colpodium sensu lato (Poeae, Poaceae), Ekol. Genet., 2008, vol. 6, no. 4, pp. 34—46. https://doi.org/10.17816/ecogen6434-46

    Article  Google Scholar 

  87. Rodionov, A.V., Gnutikov, A.A., Kotsinyan, A.R., et al., ITS1–5.8S rDNA–ITS2 sequence in 35S rRNA genes as marker for reconstruction of phylogeny of grasses (Poaceae family), Biol. Bull. Rev., 2017, vol. 7, no. 2, pp. 85—102. https://doi.org/10.1134/S2079086417020062

    Article  Google Scholar 

  88. Borkin, L.Ya., Litvinchuk, S.N., Rozanov, Yu.M., and Skorinov, D.V., On cryptic species (from the example of amphibians), Zool. Zh., 2004, vol. 83, no. 8, pp. 936—960.

    Google Scholar 

  89. Tzvelev, N.N., Zlaki SSSR (Grasses of the Soviet Union), Leningrad: Nauka, 1976.

  90. Soreng, R.J. and Fish, L., Catabrosa versus Colpodium (Poaceae: Poeae) in southern Africa, with a key to these genera and their species in Africa, Kew Bull., 2011, vol. 66, pp. 101—110.

    Article  Google Scholar 

  91. Tzvelev, N.N., Notes on some genera of the grass family (Poaceae), Nov. Sist. Vyssh. Rast., 2013, issue 44, pp. 26—38.

  92. Punina, E.O., Nosov, N.N., Myakoshina, Y.A., et al., New octoploid Catabrosa (Poaceae) species from Altai, Kew Bull., 2016, vol. 71, no. 3, p. 35. https://doi.org/10.1007/S12225-016-9646-5

    Article  Google Scholar 

  93. Mateikovich, P.A., Punina, E.O., Nosov, N.N., et al., Molecular phylogenetic study of the genus Catabrosa (Poaceae): comparative analysis of the ITS1–5.8S rDNA–ITS2 sequences of the 35S rRNA genes, Probl. Bot. Yuzhn. Sib. Mong., 2019, vol. 18, no. 1, pp. 51—56. https://doi.org/10.14258/pbssm.2019009

    Article  Google Scholar 

  94. Clevering, O.A. and Lissner, J., Taxonomy, chromosome numbers, clonal diversity and population dynamics of Phragmites australis,Aquat. Bot., 1999, vol. 64, pp. 185—208.

    Article  Google Scholar 

  95. Tzvelev, N.N., About the genera Phragmites Adams. and Cleistogenes Keng from the grass family (Poaceae) in Russia, Nov. Sist. Vyssh. Rast., 2011, vol. 43, pp. 30—44.

    Google Scholar 

  96. Nosov, N.N., Gnutikov, A.A., Punina, E.O., et al., On distinction of the reed species (Phragmites, Poaceae) according to molecular phylogenetic data, Probl. Bot. Yuzhn. Sib. Mong., 2020, vol. 19, no. 1, pp. 8—13.

    Google Scholar 

Download references

Funding

Various sections of this work were carried out within the framework of the grants of the Russian Foundation for Basic Research 17-00-00337, 17-00-00340, and 18-04-01040, the SPbU project ID 60256916, the program “Dynamics of Gene Pools,” and State Assignment AAAA-A18-118040290161-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Rodionov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodionov, A.V., Shneyer, V.S., Punina, E.O. et al. The Law of Homologous Series in Variation for Systematics. Russ J Genet 56, 1277–1287 (2020). https://doi.org/10.1134/S1022795420110071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795420110071

Keywords:

Navigation