Skip to main content
Log in

Supernumerary Spikelet Wheat Forms as Models for Studying Genetic Regulation of Inflorescence Development

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Almost all wheat species have an unbranched spike. Tetraploid rivet wheat Triticum turgidum L., branched forms of which are widespread and have been known for about 2000 years, is an exception. As for other wheat species, supernumerary spikelet forms are rare, and supernumerary spikelet/branched spike belongs to nonstandard morphotypes. As one of the examples illustrating the law of homologous series in variation, N.I. Vavilov presented the trait “spike branching” peculiar “not only to many wheat and rye species but also to many other genera with spike inflorescence or panicle.” The studies of genetic factors underlying the formation of “supernumerary spikelet/spike branching” trait and the study of peculiarities of the development of inflorescences of nonstandard branched wheat forms made it possible to demonstrate a genetic nature of hereditary variation of this trait. At the same time, the group of supernumerary spikelet/branched-lines is heterogeneous, and different genetic mechanisms can underlie the formation of branched spike. This review presents a retrospective of scientific studies devoted to the creation of supernumerary spikelet wheat forms and to the study of genetics of “supernumerary spikelet/spike branching” trait and demonstrates the results of modern studies of genetic regulation of morphogenesis of cereal inflorescences using supernumerary spikelet lines as genetic models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Vavilov, N.I., Zakon gomologicheskikh ryadov v nasledstvennoi izmenchivosti (Law of Homological Series in Hereditary Variation), Leningrad: Nauka, 1987.

  2. Dorofeev, V.F., Filatenko, A.A., Migusheva, E.F., et al., Kul’turnaya flora SSSR: pshenitsa (Cultural Flora of the USSR: Wheat), Leningrad.: Kolos, 1979, vol. 1.

  3. Dahlgren, B.E., Wheat, Chicago: Field Museum of Natural History, 1922.

    Google Scholar 

  4. Percival, J., The Wheat Plant, London: Duckworth, 1921.

    Google Scholar 

  5. Dorofeev, V.F., Spontaneous mutations as a factor in the wheat formation, Vestn. S.-kh.Nauki, 1968, vol. 7, pp. 16—26.

    Google Scholar 

  6. Coffman, F.A., Supernumerary spikelets in Mindum wheat, J. Hered., 1924, vol. 5, pp. 187—192.

    Article  Google Scholar 

  7. Goncharov, N.P., Sravnitel’naya genetika pshenits i ikh sorodichei (Comparative Genetics of Wheat and Their Relatives), Novosibirsk: Geo, 2012.

    Google Scholar 

  8. Amagai, Y., Martinek, P., Watanabe, N., et al., Microsatellite mapping of genes for branched spike and soft glumes in Triticum monococcum L., Genet. Resour. Crop Evol., 2014, vol. 61, pp. 465—471. https://doi.org/10.1007/s10722-013-0050-9

    Article  CAS  Google Scholar 

  9. Tsitsin, N.V., Branched winter rye, in Otdalennaya gibridizatsiya (Remote Hybridization), Moscow: Sel’khozgiz, 1954, pp. 313—322.

  10. Alieva, A.J. and Aminov, N.K., Influence of D genome of wheat on expression of novel type spike branching in hybrid populations of 171ACS line, Russ. J. Genet., 2013, vol. 49, no. 11, pp. 1119—1126. https://doi.org/10.1134/S1022795413110021

    Article  CAS  Google Scholar 

  11. Mel’nik, V.M., Kozlovskaya, V.F., Pastukhov, G.P., et al., Study of allelic relationships in induced spring wheat mutants, Aktual’nye voprosy genetiki i selektsii rastenii (Current Issues of Genetics and Plant Breeding) (Proc. Sib. Region Conf.), Shumnii, V.K. and Kalinina, I.P., Eds., Novosibirsk, 1980.

  12. Mel’nik, V.M. and Pastukhov, G.P., Geneticheskie issledovaniya indutsirovannykh mutantov yarovoi pshenitsy: khimicheskii mutagenez v povyshenii produktivnosti sel’skokhozyaistvennykh rastenii: (Genetic Studies of Induced Mutants of Spring Wheat: Chemical Mutagenesis to Increase the Productivity of Crops), Moscow: Nauka, 1984.

  13. Sharman, B.C., Branched head in wheat and wheat hybrids, Nature, 1944, vol. 153, pp. 497—498.

    Article  Google Scholar 

  14. Swaminathan, M.S., Chopra, V.L., and Sastry, G.R.K., Expression and stability of an induced mutation for ear branching in bread wheat, Curr. Sci., 1966, vol. 35, pp. 91—92.

    Google Scholar 

  15. Koric, S., Branching genes in Triticum aestivum, Proceedings of 4th International Wheat Genetics Symposium, Sears, E.R. and Sears, L.M.S., Eds., Columbia, MO, USA, 1973, pp. 283—288.

  16. Koric, S., Study of branched gene complex of T. aestivum ssp. vulgare and its significance for wheat breeding, J. Sci. Agric. Res., 1980, vol. 142, pp. 271—282.

    Google Scholar 

  17. Li, J., Wang, Q., Wei, H., et al., SSR mapping for locus conferring on the triple spikelet trait of the Tibetan triple-spikelet wheat (Triticum aestivum L. concv. tripletum), Triticeae Genomics Genet., 2011, vol. 2, pp. 1—6. https://doi.org/10.5376/tgg.2011.02.0001

    Article  Google Scholar 

  18. Pennell, A.L. and Halloran, G.M., Inheritance of supernumerary spikelets in wheat, Euphytica, 1983, vol. 32, pp. 767—776.

    Article  Google Scholar 

  19. Klindworth, D.L., Williams, N.D., and Joppa, L.R., Inheritance of supernumerary spikelets in a tetraploid wheat cross, Genome, 1990, vol. 33, pp. 509—514.

    Article  CAS  Google Scholar 

  20. Martinek, P., Gene resources with non-standard spike morphology in wheat, in Proceedings of 9th International Wheat Genetics Symposium, Saskatoon, Saskatchewan, Canada, 1998, vol. 2, pp. 286—288.

  21. Martinek, P. and Bednar, J., Changes of spike morphology (multirow spike—MRS, longglumes—LG) in wheat (Triticum aestivum L.) and their importance for breeding, Genetic Collections, Isogenic and Alloplasmic Lines (Proc. Int. Conf. Novosibirsk, Russia), 2001, pp. 192—194.

  22. Sears, E.R., The Aneuploids of Common Wheat, Columbia, MO: Univ. Missouri, 1954, pp. 3—58.

    Google Scholar 

  23. Amagai, Y., Aliyeva, A.J., Aminov, N.Kh., et al., Microsatellite mapping of the genes for sham ramification and extra glume in spikelets of tetraploid wheat, Genet. Resour. Crop Evol., 2014, vol. 61, pp. 491—498. https://doi.org/10.1007/s10722-013-0052-7

    Article  CAS  Google Scholar 

  24. Amagai, Y., Aliyeva, A.J., Aminov, N.Kh., et al., The third glume phenotype is associated with rachilla branching in the spikes of tetraploid wheat (Triticum L.), Genet. Resour. Crop Evol., 2017, vol. 64, pp. 835—842. https://doi.org/10.1007/s10722-017-0503-7

    Article  CAS  Google Scholar 

  25. Bonnet, O.T., The development of the wheat spike, J. Agr. Res., 1936, vol. 53, pp. 445—451.

    Google Scholar 

  26. Shitsukawa, N., Kinjo, H., Takumi, S., et al., Heterochronic development of the floret meristem determines grain number per spikelet in diploid, tetraploid and hexaploid wheats, Ann. Bot., 2009, vol. 104, pp. 243—251. https://doi.org/10.1093/aob/mcp129

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dobrovolskaya, O.B., Badaeva, E.D., Adonina, I.G., et al., Investigation of morphogenesis of inflorescence and determination of the nature of inheritance of “supernumerary spikelets” trait of bread wheat (Triticum aestivum L.) mutant line, Russ. J. Dev. Biol., 2014, vol. 45, pp. 361—366. https://doi.org/10.1134/S1062360414060034

    Article  CAS  Google Scholar 

  28. Dobrovolskaya, O., Pont, C., Sibout, R., et al., FRIZZY PANICLE drives supernumerary spikelets in bread wheat (T. aestivum L.), Plant Physiol., 2015, vol. 167, pp. 189—199. https://doi.org/10.1104/pp.114.250043

    Article  CAS  PubMed  Google Scholar 

  29. Dobrovolskaya, O.B., Amagai, Y., Popova, K.I., et al., Genes WHEAT FRIZZY PANICLE and SHAMRAMIFICATION 2 independently regulate differentiation of floral meristems in wheat, BMC Plant Biol., 2017, vol. 17, suppl. 2, article 252. https://doi.org/10.1186/s12870-017-1191-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Komatsu, M., Chujo, A., Nagato, Y., et al., FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets, Development, 2003, vol. 130, pp. 3841—3850. https://doi.org/10.1242/dev.00564

    Article  CAS  PubMed  Google Scholar 

  31. Chuck, G., Muszynski, M., Kellogg, E., et al., The control of spikelet meristem identity by the branched silkless1 gene in maize, Science, 2002, vol. 298, pp. 1238—1241. https://doi.org/10.1126/science.1076920

    Article  CAS  PubMed  Google Scholar 

  32. Derbyshire, P. and Byrne, M.E., MORE SPIKELETS1 is required for spikelet fate in the inflorescence of Brachypodium distachyon,Plant Physiol., 2013, vol. 161, pp. 1291—1302. https://doi.org/10.1104/PP.112.212340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Poursarebani, N., Seidensticker, T., Koppolu, R., et al., The genetic basis of composite spike form in barley and “Miracle-Wheat”, Genetics, 2015, vol. 201, pp. 155—165. https://doi.org/10.1534/genetics.115.176628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Boden, S.A., Cavanagh, C., Cullis, B.R., et al., Ppd-1 is a key regulator of inflorescence architecture and paired spikelet development in wheat, Nat. Plants, 2015, vol. 1, article 14016. https://doi.org/10.1038/nplants.2014.16

    Article  CAS  PubMed  Google Scholar 

  35. Peng, Z.S., Yen, C., and Yang, J.L., Chromosomal location of genes for supernumerary spikelet in bread wheat, Euphytica, 1998, vol. 103, pp. 109—114. https://doi.org/10.1023/A:1018323310621

    Article  Google Scholar 

  36. Klindworth, D.L., Williams, N.D., and Joppa, L.R., Inheritance of supernumerary spikelets in a tetraploid wheat cross, Genome, 1990, vol. 33, pp. 509—514. https://doi.org/10.1139/g90-076

    Article  CAS  Google Scholar 

  37. Klindworth, D.L., Klindworth, M.M., and Williams, N.D., Telosomic mapping of four genetic markers in durum wheat, J. Hered., 1997, vol. 88, pp. 229—232. https://doi.org/10.1093/oxfordjournals

    Article  Google Scholar 

  38. Laikova, L.I., Arbuzova, V.S., Popova, O.M., et al., Study of spike branching in mutant lines of bread wheat variety Saratov 29, in Aktual’nye zadachi selektsii i semenovodstva sel’skokhozyaistvennykh rastenii na sovremennom etape: doklady i soobshcheniya IX genetiko-selektsionnoi shkoly. (5—9 aprelya 2004 g.) (Relevant Problems of Breeding and Seed Production of Agricultural Crops at the Present Stage: Abstracts and Reports of the IX Genetic-Breeding School (April 5—9, 2004)), Novosibirsk, 2005, pp. 388—393.

  39. Sun, D.F., Inheritance of genes controlling supernumerary spikelet in wheat line 51885, Euphytica, 2009, vol. 167, pp. 173—179. https://doi.org/10.1007/s10681-008-9854-7

    Article  Google Scholar 

  40. Muramatsu, M., A presumed genetic system determining the number of spikelets per rachis node in the tribe Triticeae, Breed. Sci., 2009, vol. 59, pp. 617—620. https://doi.org/10.1270/jsbbs.59.617

    Article  Google Scholar 

  41. Košner, J. and Foltyn, J., Chromozomalní poměry pšenice obecné (Triticum aestivum L.) s větevnatým klasem, Sbor. Ú-VTIZ, Genet. Šlecht., 1989, vol. 25, no. 1, pp. 11—17.

  42. Dobrovol’skaya, O.B., Martinek, P., Adonina, I.G., et al., Effect of rearrangements of homoeologous group 2 chromosomes of bread wheat on spike morphology, Vavilovskii Zh. Genet. Sel., 2014, vol. 18, no. 4/1, pp. 672—680. https://doi.org/10.7868/S0475145014060032

  43. Haque, M.A., Martinek, P., Kobayashi, S., et al., Microsatellite mapping of genes for semi-dwarfism and branched spike in Triticum durum Desf. var. ramosoobscurum Jakubz.“Vetvistokoloskaya,” Genet. Resour. Crop Evol., 2012, vol. 59, pp. 831–837. https://doi.org/10.1007/s10722-011-9722-5

    Article  CAS  Google Scholar 

  44. Dobrovolskaya, O., Martinek, P., Voylokov, A.V., et al., Microsatellite mapping of genes that determine supernumerary spikelets in wheat (T. aestivum) and rye (S. cereale), Theor. Appl. Genet., 2009, vol. 119, pp. 867–874. https://doi.org/10.1007/s00122-009-1095-1

    Article  CAS  PubMed  Google Scholar 

  45. Echeverry-Solarte, M., Kumar, A., Kianian, S., et al., Genome-wide genetic dissection of supernumerary spikelet and related traits in common wheat, Plant Genet., 2014, vol. 7, pp. 1–16. https://doi.org/10.3835/plantgenome2014.03.0013

    Article  Google Scholar 

  46. Zhang, R.Q., Hou, F., Chen, J., et al., Agronomic characterization and genetic analysis of the supernumerary spikelet in tetraploid wheat (Triticum turgidum L.), J. Integr. Agr., 2017, vol. 16, pp. 1304–1311. https://doi.org/10.1016/S2095-3119(16)61469-7

    Article  Google Scholar 

  47. Benito, C., Zaragoza, C., Gallego, F.J., et al., A map of rye chromosome 2R using isozyme and morphological markers, Theor. Appl. Genet., 1991, vol. 82, pp. 112–116.

    Article  CAS  Google Scholar 

  48. Castiglioni, P., Pozzi, C., Heun, M., et al., An AFLP-based procedure for the efficient mapping of mutations and DNA probes in barley, Genetics, 1998, vol. 149, pp. 2039–2056.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Rossini, L., Vecchietti, A., Nicoloso, L., et al., Candidate genes for barley mutants involved in plant architecture: an in silico approach, Theor. Appl. Genet., 2006, vol. 112, pp. 1073–1085. https://doi.org/10.1007/s00122-006-0209-2

    Article  CAS  PubMed  Google Scholar 

  50. Rao, N.N., Prasad, K., and Kumar, P.R., Distinct regulatory role for RFL, the rice LFY homolog, in determining flowering time and plant architecture, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, pp. 3646–3651. https://doi.org/10.1073/pnas.0709059105

    Article  PubMed  PubMed Central  Google Scholar 

  51. Schnurbush, T., Wheat and barley biology: towards new frontiers, J. Integr. Plant Biol., 2019, vol. 62, pp. 198–203. https://doi.org/10.1111/jipb.12782

    Article  Google Scholar 

  52. Dixon, L.E., Cockram, J.R., Mellers, G., et al., TEOSINTE BRANCHED 1 regulates inflorescence architecture and development in bread wheat (Triticum aestivum), Plant Cell, 2018, vol. 30, no. 3, pp. 563–581. https://doi.org/10.1105/tpc.17.00961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-04-00483-a) and by the budgetary project no. AAAA-A16-116061750188-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. B. Dobrovolskaya.

Ethics declarations

The author declares that she has no conflict of interest. This article does not contain any studies involving animals or human participants performed by the author.

Additional information

Translated by A. Barkhash

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobrovolskaya, O.B. Supernumerary Spikelet Wheat Forms as Models for Studying Genetic Regulation of Inflorescence Development. Russ J Genet 56, 1298–1307 (2020). https://doi.org/10.1134/S1022795420110034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795420110034

Keywords:

Navigation