Skip to main content
Log in

Trichomes of Higher Plants: Homologous Series in Hereditary Variability and Molecular Genetic Mechanisms

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The diversity of trichomes is extremely large in the plant kingdom: this is the pubescence of leaves and glumes in cereals and fruits and petioles in fruit plants, thorns in rose and cucumber, hairs on Drosera leaves, or cotton fibers. Trichomes vary in shape, size, structure, location, capability to secrete, etc. All trichomes share a common basic function—protecting plants from various biotic and abiotic factors. Artificial selection sometimes works against the development of trichomes. For example, in the selection of fruit trees, preference is given to those with smooth fruits. Among wild species, intraspecific variability on the presence/absence of trichomes was also detected. The aim of this review is to compare the mechanisms of formation of trichomes in different species in order to estimate extension of homologous series in hereditary variability within different taxa. Data on the morphology of trichomes are summarized. Data on genes determining variability are compared, and orthologous genes are revealed. Comparison with data on gene networks involved in the development of trichomes indicates that, despite the common molecular mechanisms of trichome development in all higher plants, mutations of different components of this gene network confer observed variability within different taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Tschermak, E., Über Züchtung neuer Getreiderassen mittelst künstlicher Kreuzung, Zeitschr. Landw. Versuch.Österreich, 1901, vol. 4, pp. 1029—1060.

    Google Scholar 

  2. Howard, A. and Howard, G., On the inheritance of some characters in wheat. India: Dept. Agr. Mem., Bot. Ser., 1912, no. 5, pp. 1—47.

  3. Howard, A. and Howard, G., On the inheritance of some characters in wheat. India: Dept. Agr. Mem., Bot. Ser., 1915, no. 7, pp. 273—285.

  4. Wellington, R., Mendelian inheritance of epidermal characters in the fruit of Cucumis sativus,Science, 1913, vol. 38, no. 967, p. 61. https://doi.org/10.1126/science.38.967.61

    Article  CAS  PubMed  Google Scholar 

  5. Stewart, R.T. and Wentz, J.B., Recessive glabrous character in soybeans, Agron. J., 1926, vol. 18, pp. 997—1009.

    Article  Google Scholar 

  6. Vatsenko, A.A., Inheritance of glume pubescence and the black color of the ear in durum wheat Triticum durum Desf., Dokl. Akad. Nauk SSSR, 1934, vol. 4, nos. 5—6, pp. 338—342.

    Google Scholar 

  7. Vavilov, N.I., Nauchnye osnovy selektsii pshenitsy (Theoretical Bases of Wheat Breeding), Moscow: Sel’khozgiz, 1935, pp. 70—87.

  8. Khlestkina, E.K., Pshenichnikova, T.A., Röder, M.S., et al., Comparative mapping of genes for glume colouration and pubescence in hexaploid wheat (Triticum aestivum L.), Theor. Appl. Genet., 2006, vol. 113, pp. 801—807. https://doi.org/10.1007/s00122-006-0331-1

    Article  CAS  PubMed  Google Scholar 

  9. Dobrovolskaya, O., Pschenichnikova, T.A., Arbuzova, V.S., et al., Molecular mapping of genes determining hairy leaf character common wheat with respect to other species of the Triticeae, Euphytica, 2007, vol. 155, pp. 285—293. https://doi.org/10.1007/s10681-006-9329-7

    Article  CAS  Google Scholar 

  10. Du, W., Yu, D., and Fu, S., Analysis of QTLs for the trichome density on the upper and downer surface of leaf blade in soybean (Glycine max (L.) Merr.), Agric. Sci. China, 2009, vol. 8, pp. 529—537. https://doi.org/10.1016/S1671-2927(08)60243-6

    Article  CAS  Google Scholar 

  11. Pan, Y., Bo, K., Cheng, Z., and Weng, Y., The loss-of-function GLABROUS 3 mutation in cucumber is due to LTR-retrotransposon insertion in a class IV HD-ZIP transcription factor gene CsGL3 that is epistatic over CsGL1, BMC Plant Biol., 2015, vol. 15, pp. 1—15.https://doi.org/10.1186/s12870-015-0693-0.

  12. Doroshkov, A.V., Konstantinov, D.K., Afonnikov, D.A., and Gunbin, K.V., The evolution of gene regulatory networks controlling Arabidopsis thaliana L. trichome development, BMC Plant Biol., 2019, vol. 19, pp. 71—85.https://doi.org/10.1186/s12870-019-1640-2.

  13. Sautkina, T.A. and Poliksenova, V.D., Morfologiya rastenii: kurs lektsii (Plant Morphology: A Course of Lectures), Minsk: Belarus. Gos. Univ., 2004, vol. 2, part 1.

  14. Korovin, O.A., Anatomiya i morfologiya vysshikh rastenii: slovar’ terminov (Anatomy and Morphology of Higher Plants: Glossary of Terms), Moscow: Drofa, 2007.

    Google Scholar 

  15. Werker, E., Trichome diversity and development, Adv. Bot. Res., 2000, vol. 31, pp. 1—35. https://doi.org/10.1016/S0065-2296(00)31005-9

    Article  Google Scholar 

  16. Wagner, G.J., Wang, E., and Shepherd, R.W., New approaches for studying and exploiting an old protuberance, the plant trichome, Ann. Bot., 2004, vol. 93, no. 1, pp. 3—11.https://doi.org/10.1093/aob/mch011.

  17. Levin, D.A., The role of trichomes in plant defense, Q. Rev. Biol., 1973, vol. 48, no. 1, part 1, pp. 3—15. https://doi.org/10.1086/407484

  18. Huttunen, P., Kärkkäinen, K., Løe, G., et al., Leaf trichome production and responses to defoliation and drought in Arabidopsis lyrata (Brassicaceae), Ann. Bot. Fenn., 2010, vol. 47, no. 3, pp. 199—207. https://doi.org/10.5735/085.047.0304

    Article  Google Scholar 

  19. Karabourniotis, G., Papadopoulos, K., Papamarkou, M., and Manetas, Y., Ultraviolet-B radiation absorbing capacity of leaf hairs, Physiol. Plant., 1992, vol. 86, no. 3, pp. 414—418. https://doi.org/10.1111/j.1399-3054.1992.tb01337.x

    Article  Google Scholar 

  20. Johnson, H.B., Plant pubescence: an ecological perspective, Bot. Rev., 1975, vol. 41, no. 3, pp. 233—258. https://doi.org/10.1007/BF02860838

    Article  Google Scholar 

  21. Karabourniotis, G., Liakopoulos, G., Nikolopoulos, D., and Bresta, P., Protective and defensive roles of non-glandular trichomes against multiple stresses: structure—function coordination, J. For. Res., 2020, vol. 31, no. 1, pp. 1—12. https://doi.org/10.1007/s11676-019-01034-4

    Article  CAS  Google Scholar 

  22. Gutierrez-Alcala, G., Gotor, C., Meyer, A.J., et al., Glutathione biosynthesis in Arabidopsis trichome cells, Proc. Natl. Acad. Sci. U.S.A., 2020, vol. 97, no. 20, pp. 11108—11113. https://doi.org/10.1073/pnas.190334497

    Article  Google Scholar 

  23. Salt, D.E., Prince, R.C., Pickering, I.J., et al., Mechanisms of cadmium mobility and accumulation in Indian mustard, Plant Physiol., 1995, vol. 109, pp. 1427—1433. https://doi.org/10.1104/pp.109.4.1427

  24. Domínguez-Solís, J.R., López-Martín, M.C., Ager, F.J., et al., Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana, Plant Biotechnol. J., 2004, vol. 2, no. 6, pp. 469—476.https://doi.org/10.1111/j.1467-7652.2004.00092.x

  25. Vendramin, E., Pea, G., Dondini, L., et al., A unique mutation in a MYB gene cosegregates with the nectarine phenotype in peach, PLoS One, 2014, vol. 9, no. 3, pp. 1—13. https://doi.org/10.1371/journal.pone.0090574

    Article  CAS  Google Scholar 

  26. Rezanova, T.A., Sorokopudov, V.N., and Kolesnikov, D.A., Morphological classification of trichomes of Ribes americanum Mill. (Grossulariaceae), Nauchn. Vedomosti, 2010, issue 11, no. 9(80), pp. 5—10.

  27. Kuznetsova, T.A., Adaptive changes of the leaf surface of Ribes nigrum L. depending on different conditions of water supply, Nauchn. Vedomosti, 2015, issue 31, no. 9(206), pp. 29—36.

  28. Kumakhova, T.Kh., Voronkov, A.S., Bashabova, A.V., and Ryabchenko, A.S., Morphological and functional characteristics of leaves and fruits in Maloideae (Rosaceae): microstructure of surface tissues, Tr. Prikl. Bot.,Genet. Sel., 2019, vol. 180, no. 1, pp. 105—112. https://doi.org/10.30901/2227-8834-2019-1-105-112

    Article  Google Scholar 

  29. Nikolaenko, V.V., Anatomical and morphological features of the decorative strawberry leaf apparatus development under the influence of the environment, Uch. Zap. Krym. Fed. Univ. im. V.I. Vernadskogo, 2010, vol. 23(62), no. 2, pp. 131—141.

  30. Wang, Y., Zhao, M.Y., Xu, Z.D., et al., Cloning and expression analysis of TTG1 gene related to Rosa rugosa trichomes formation, Am. J. Plant Sci., 2019, vol. 10, pp. 265—275. https://doi.org/10.4236/ajps.2019.1020

    Article  CAS  Google Scholar 

  31. Maistrenko, O.I., Identification and localization of leaf pubescence genes in young common wheat plants, Genetika (Moscow), 1976, vol. 12, no. 5, pp. 5—15.

    Google Scholar 

  32. Arbuzova, V.S., Efremova, T.T., Laikova, L.I., et al., The development of precise genetic stocks in two wheat cultivars and their use in genetic analysis, Euphytica, 1996, vol. 89, pp. 11—15.

  33. Korzun, V., Malyshev, S., Pickering, R.A., and Börner, A., RFLP mapping of a gene for hairy leaf sheath using a recombinant line from Hordeum vulgare L. × Hordeum bulbosum L. cross, Genome, 1999, vol. 42, no. 5, pp. 960—963. https://doi.org/10.1139/g99-021

    Article  CAS  Google Scholar 

  34. Taketa, S., Chang, C.L., Ishii, M., and Takeda, K., Chromosome arm location of the gene controlling leaf pubescence of a Chinese local wheat cultivar “Hong-mang-mai,” Euphytica, 2002, vol. 125, pp. 141—147. https://doi.org/10.1023/A:1015812907111

    Article  CAS  Google Scholar 

  35. Dobrovolskaya, O., Pschenichnikova, T.A., Arbuzova, V.S., et al., Molecular mapping of genes determining hairy leaf character common wheat with respect to other species of the Triticeae, Euphytica, 2007, vol. 155, pp. 285—293. https://doi.org/10.1007/s10681-006-9329-7

    Article  CAS  Google Scholar 

  36. Pshenichnikova, T.A., Doroshkov, A.V., Simonov, A.V., et al., Diversity of leaf pubescence in bread wheat and relative species, Genet. Resour. Crop. Evol., 2017, vol. 64, pp. 1761—1773. https://doi.org/10.1007/s10722-016-0471-3

    Article  Google Scholar 

  37. Glas, J.J., Schimmel, B.C.J., Alba, J.M., et al., Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores, Int. J. Mol. Sci., 2012, vol. 13, pp. 17077—17103. https://doi.org/10.3390/ijms131217077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tissier, A., Glandular trichomes: what comes after expressed sequence tags, Plant J., 2012, vol. 70, pp. 51—68. https://doi.org/10.1111/j.1365-313X.2012.04913.x

    Article  CAS  PubMed  Google Scholar 

  39. Wagner, G.J., Secreting glandular trichomes: more than just hairs, Plant Physiol., 1991, vol. 96, pp. 675—679. https://doi.org/ 0032-0889/91/96/0675/05/$01.00/0

  40. Schilmiller, A.L., Last, R.L., and Pichersky, E., Harnessing plant trichome biochemistry for the production of useful compounds, Plant J., 2008, vol. 54, pp. 702—711. https://doi.org/10.1111/j.1365-313X.2008.03432.x

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, H., Wu, K., Wang, Y., et al., A WUSCHEL-like homeobox gene, OsWOX3B responses to NUDA/GL-1 locus in rice, Rice, 2012, vol. 5, no. 30, pp. 1—10. https://doi.org/10.1016/j.ab.2012.03.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bergau, N., Bennewitz, S., Syrowatka, F., et al., The development of type VI glandular trichomes in the cultivated tomato Solanum lycopersicum and a related wild species S. habrochaites, BMC Plant Biol., 2015, vol. 15, pp. 1—15. https://doi.org/10.1186/s12870-015-0678-z

  43. Bennewitz, S., Bergau, N., and Tissier, A., QTL mapping of the shape of type vi glandular trichomes in tomato, Front. Plant Sci., 2018, pp. 1—12.https://doi.org/10.3389/fpls.2018.01421

  44. Kellogg, A.A., Branaman, T.J., Jones, N.M., et al., Morphological studies of developing Rubus prickles suggest that they are modified glandular trichomes, Botany, 2011, vol. 89, no. 4, pp. 217—226.https://doi.org/10.1139/b11-008.

  45. Wang, D.-J., Zeng, J.-W., and Ma, W.-T., Morphological and structural characters of trichomes on various organs of Rosa roxburghii,HortScience, 2019, vol. 54, no. 1, pp. 45—51. https://doi.org/10.21273/HORTSCI13485-18

    Article  CAS  Google Scholar 

  46. Flyaksberger, K.A., Pshenitsy (Wheats), Moscow: Ogiz, 1935, pp. 202—203.

    Google Scholar 

  47. Doroshkov, A.V., Pshenichnikova, T.A., and Afonnikov, D.A., Morphological characterization and inheritance of leaf hairiness in wheat (Triticum aestivum L.) as analyzed by computer-aided phenotyping, Russ. J. Genet., 2011, vol. 47, no. 6, pp. 836—841.

    Article  CAS  Google Scholar 

  48. Genaev, M.A., Doroshkov, A.V., Pshenichnikova, T.A., et al., Extraction of quantitative characteristics describing wheat leaf pubescence with a novel image-processing technique, Planta, 2012, vol. 236, pp. 1943—1954. https://doi.org/10.1007/s00425-012-1751-6

    Article  CAS  PubMed  Google Scholar 

  49. Sears, E.R., Nullisomic analysis in common wheat, Am. Nat., 1953, vol. 87, pp. 245—252.

    Article  Google Scholar 

  50. Korzun, V., Malyshev, S., Kartel, N., et al., A genetic linkage map of rye (Secale cereale L.), Theor. Appl. Genet., 1998, vol. 96, pp. 203—208.

    Article  CAS  Google Scholar 

  51. Doroshkov, A.V., Afonnikov, D.A., Dobrovolskaya, O.B., and Pshenichnikova, T.A., Interactions between leaf pubescence genes in bread wheat as assessed by high throughput phenotyping, Euphytica, 2016, vol. 207, no. 3, pp. 491—500. https://doi.org/10.1007/s10681-015-1520-2

    Article  Google Scholar 

  52. Franckowiak, J.D., Revised linkage maps for morphological markers in barley, Hordeum vulgare,Barley Genet. Newslett., 1997, vol. 26, pp. 9—21.

    Google Scholar 

  53. Lundqvist, U.J., Franckowiak, D., and Konishi, T., New and revised descriptions of barley genes, Barley Genet. Newslett., 1997, vol. 26, pp. 22—516.

    Google Scholar 

  54. Devos, K.M., Atkinson, M.D., Chinoy, C.N., et al., Chromosomal rearrangements in the rye genome relative to that of wheat, Theor. Appl. Genet., 1993, vol. 85, pp. 673—680. https://doi.org/10.1007/BF00225004

    Article  CAS  PubMed  Google Scholar 

  55. Yu, Z.H., McCouch, S.R., Tanksley, S.D., et al., Association of morphological and RFLP markers in rice (Oryza sativa L.), Genome, 1995, vol. 38, pp. 566—574. https://doi.org/10.1139/g95-073

    Article  CAS  PubMed  Google Scholar 

  56. Wang, D., Sun, S.-X., Gao, F.-Y., et al., Mapping a rice glabrous gene using simple sequence repeat markers, Rice Sci., 2009, vol. 16, pp. 93—98. https://doi.org/10.1016/S1672-6308(08)60063-3

    Article  Google Scholar 

  57. Li, W., Wu, J., Weng, S., et al., Characterization and fine mapping of the glabrous leaf and hull mutants (gl1) in rice (Oryza sativa L.), Plant Cell Rep., 2010, vol. 29, pp. 617—627. https://doi.org/10.1007/s00299-010-0848-2

    Article  CAS  PubMed  Google Scholar 

  58. Stein, N., Prasad, M., Scholz, U., et al., A 1000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics, Theor. Appl. Genet., 2007, vol. 114, pp. 823—839. https://doi.org/10.1007/s00122-006-0480-2

    Article  CAS  PubMed  Google Scholar 

  59. Li, J., Yuan, Y., Lu, E., and Yang, L., Glabrous Rice 1, encoding a homeodomain protein, regulates trichome development in rice, Rice, 2012, vol. 5, no. 32, pp. 1—10. https://doi.org/10.1186/1939-8433-5-32

    Article  Google Scholar 

  60. Zeng, Y.H., Zhu, Y.S., Lian, L., et al., Genetic analysis and fine mapping of the pubescence gene GL6 in rice (Oryza sativa L.), Chin. Sci. Bull., 2013, vol. 58, pp. 2992—2999. https://doi.org/10.1007/s11434-013-5737-y

    Article  CAS  Google Scholar 

  61. Hamaoka, N., Yasui, H., Yamagata, Y., et al., A hairy-leaf gene, BLANKET LEAF, of wild Oryza nivara increases photosynthetic water use efficiency in rice, Rice, 2017, vol. 10, pp. 1—11. https://doi.org/10.1186/s12284-017-0158-1

    Article  Google Scholar 

  62. Moose, S.P., Lauter, N., and Carlson, S.R., The maize macrohairless1 locus specifically promotes leaf blade macrohair initiation and responds to factors regulating leaf identity, Genetics, 2004, vol. 166, no. 3, pp. 1451—1461. https://doi.org/10.1534/genetics.166.3.1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Devos, K.M., Chao, S., Li, Q.Y., et al., Relationship between chromosome 9 of maize and wheat homeologous group 7 chromosomes, Genetics, 1994, vol. 138, pp. 1287—1292.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Vernoud, V., Laigle, G., Rozier, F., et al., The HD-ZIP IV transcription factor OCL4 is necessary for trichome patterning and anther development in maize, Plant J., 2009, vol. 59, pp. 883—894.https://doi.org/10.1111/j.1365-313.2009.03916.x

  65. Ahn, S. and Tanksley, S.D., Comparative linkage maps of the rice and maize genomes, Proc. Natl. Acad. Sci. U.S.A., 1993, vol. 90, pp. 7980—7984.

    Article  CAS  Google Scholar 

  66. Payne, C.T., Zhang, F., and Lloyd, A.M., GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1, Genetics, 2000, vol. 156, no. 3, pp. 1349—1362.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang, F., A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis,Development, 2003, vol. 130, no. 20, pp. 4859—4869. https://doi.org/10.1242/dev.00681

    Article  CAS  PubMed  Google Scholar 

  68. Nesi, N., Debeaujon, I., Jond, C., et al., The TT8 gene encodes a basic helix—loop—helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques, Plant Cell, 2000, vol. 12, no. 10, pp. 1863—1878. https://doi.org/10.1105/tpc.12.10.1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Baudry, A., Heim, M.A., Dubreucq, B., et al., TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana, Plant J., 2004, vol. 39, no. 3, pp. 366—380.https://doi.org/10.1111/j.1365-313X.2004.02138.x

  70. Maes, L., Inze, D., and Goossens, A., Functional specialization of the TRANSPARENT TESTA GLABRA1 network allows differential hormonal control of laminal and marginal trichome initiation in Arabidopsis rosette leaves, Plant Physiol., 2008, vol. 148, no. 3, pp. 1453—1464. https://doi.org/10.1104/pp.108.125385

    Article  PubMed  PubMed Central  Google Scholar 

  71. Walker, A.R., Davison, P.A., Bolognesi-Winfield, A.C., et al., The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein, Plant Cell, 1999, vol. 11, no. 7, pp. 1337—1349. https://doi.org/10.1105/tpc.11.7.1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pattanaik, S., Patra, B., Singh, S.K., and Yuan, L., An overview of the gene regulatory network controlling trichome development in the model plant, Arabidopsis,Front. Plant Sci., 2014, pp. 1—8. https://doi.org/10.3389/fpls.2014.00259

  73. Brueggemann, J., Weisshaar, B., and Sagasser, M., A WD40-repeat gene from Malus × domestica is a functional homologue of Arabidopsis thaliana TRANSPARENT TESTA GLABRA1,Plant Cell Rep., 2010, vol. 29, no. 3, pp. 285—294. https://doi.org/10.1007/s00299-010-0821-0

    Article  CAS  PubMed  Google Scholar 

  74. Sompornpailin, K., Makita, Y., Yamazaki, M., et al., A WD-repeat-containing putative regulatory protein in anthocyanin biosynthesis in Perilla frutescens,Plant Mol. Biol., 2002, vol. 50, pp. 485—495. https://doi.org/10.1023/A:1019850921627

    Article  CAS  PubMed  Google Scholar 

  75. Humphries, J.A., Walker, A.R., Timmis, J.N., and Orford, S.J., Two WD-repeat genes from cotton are functional homologues of the Arabidopsis thaliana TRANSPARENT TESTA GLABRA1 (TTG1) gene, Plant Mol. Biol., 2005, vol. 57, pp. 67—81. https://doi.org/10.1007/s11103-004-6768-1

    Article  CAS  PubMed  Google Scholar 

  76. Dressel, A. and Hemleben, V., Transparent testa glabra 1 (TTG1) and TTG1-like genes in Matthiola incana R. Br. and related Brassicaceae and mutation in the WD-40 motif, Plant Biol., 2009, vol. 11, pp. 204—212. https://doi.org/10.1111/j.1438-8677.2008.00099.x

    Article  CAS  PubMed  Google Scholar 

  77. Carey, C.C., Strahle, J.T., Selinger, D.A., and Chandler, V.L., Mutations in the pale aleurone color1 regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRA1 gene in Arabidopsis thaliana,Plant Cell, 2004, vol. 16, pp. 450—464. https://doi.org/10.1105/tpc.018796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Vetten de, F.N., Quattrocchio, J., Mol, R., and Koes, R., The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals, Genes Dev., 1997, vol. 11, pp. 1422—1434.

    Article  Google Scholar 

  79. Sun, B., Zhu, Z., Liu, R., et al., TRANSPARENT TESTA GLABRA1 (TTG1) regulates leaf trichome density in tea Camellia sinensis,Nordic J. Bot., 2020, vol. 38, no. 1, pp. 1—10. https://doi.org/10.1111/njb.02592

    Article  Google Scholar 

  80. Huang, X., Yan, H., Zhai, L., and Yi, Y., GLABROUS1 from Rosa roxburghii Tratt regulates trichome formation by interacting with the GL3/EGL3 protein, Gene, 2019, vol. 692, pp. 60—67. https://doi.org/10.1016/j.gene.2018.12.071

    Article  CAS  PubMed  Google Scholar 

  81. Liu, S., Tian, N., Li, J., et al., Isolation and identification of novel genes involved in artemisinin production from flowers of Artemisia annua using suppression subtractive hybridization and metabolite analysis, Planta Med., 2009, vol. 75, no. 14, pp. 1542—1547. https://doi.org/10.1055/s-0029-1185809

    Article  CAS  PubMed  Google Scholar 

  82. Wang, S., Wang, J.-W., Yu, N., et al., Control of plant trichome development by a cotton fiber MYB gene, Plant Cell, 2004, vol. 16, pp. 2323—2334. https://doi.org/10.1105/tpc.104.024844.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang, Z., Yang, Z., and Li, F., Updates on molecular mechanisms in the development of branched trichome in Arabidopsis and non-branched in cotton, Plant Biotechnol. J., 2019, vol. 17, pp. 1706—1722. https://doi.org/10.1111/pbi.13167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang, M., Wang, P., Tu, L., et al., Multi-omics maps of cotton fibre reveal epigenetic basis for staged single-cell differentiation, Nucleic Acids Res., 2016, vol. 44, pp. 4067—4079.

    Article  CAS  Google Scholar 

  85. Zhang, F., Zuo, K., Zhang, J., et al., An L1 box binding protein, GbML1, interacts with GbMYB25 to control cotton fibre development, J. Exp. Bot., 2010, vol. 61, pp. 3599—3613.

    Article  CAS  Google Scholar 

  86. Li, Q., Cao, C., Zhang, C., et al., The identification of Cucumis sativus Glabrous 1 (CsGL1) required for the formation of trichomes uncovers a novel function for the homeodomain-leucine zipper I gene, J. Exp. Bot., 2015, vol. 66, no. 9, pp. 2515—2526. https://doi.org/10.1093/jxb/erv046

    Article  CAS  PubMed  Google Scholar 

  87. Liu, X., Ezra, B., Cai, Y., and Ren, H., Trichome-related mutants provide a new perspective on multicellular trichome initiation and development in cucumber (Cucumis sativus L.), Front. Plant Sci., 2016, vol. 7, pp. 1—9. https://doi.org/10.3389/fpls.2016.01187

    Article  CAS  Google Scholar 

  88. Cui, J.-Y., Miao, H., Ding, L.-H., et al., A new glabrous gene (csgl3) identifiedin trichome development in cucumber (Cucumis sativus L.), PLoS One, 2016, vol. 11, no. 2, pp. 1—13. https://doi.org/10.1371/journal.pone.0148422

    Article  CAS  Google Scholar 

  89. Yan, X., Zhang, X., Lu, M., et al., De novo sequencing analysis of the Rosa roxburghii fruit transcriptome reveals putative ascorbate biosynthetic genes and EST-SSR markers, Gene, 2015, vol. 561, pp. 54—62. https://doi.org/10.1016/j.gene.2015.02.054

    Article  CAS  PubMed  Google Scholar 

  90. Marks, M.D. and Feldmann, K.A., Trichome development in Arabidopsis thaliana: I. T-DNA tagging of the GLABROUS1 gene, Plant Cell, 1989, vol. 1, no. 11, pp. 1043—1050. https://doi.org/10.2307/3869021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhao, H., Wang, X., Zhu, D., et al., A single amino acid substitution in IIIf subfamily of basic helix-loop-helix transcription factor AtMYC1 leads to trichome and root hair patterning defects by abolishing its interaction with partner proteins in Arabidopsis,J. Biol. Chem., 2012, vol. 287, no. 17, pp. 14109—14121. https://doi.org/10.1074/jbc.M111.280735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dubos, C., Stracke, R., Grotewold, E., et al., MYB transcription factors in Arabidopsis,Trends Plant Sci., 2010, vol. 15, no. 10, pp. 573—581. https://doi.org/10.1016/j.tplants.2010.06.005

    Article  CAS  PubMed  Google Scholar 

  93. Heim, M.A., The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity, Mol. Biol. Evol., 2003, vol. 20, no. 5, pp. 735—747. https://doi.org/10.1093/molbev/msg088

    Article  CAS  PubMed  Google Scholar 

  94. Yang, D.-L., Yao, J., Mei, C.-S., et al., Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 19, pp. 1192—1200. https://doi.org/10.1073/pnas.1201616109

    Article  Google Scholar 

  95. Schellmann, S., Schnittger, A., Kirik, V., et al., TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis,EMBO J., 2002, vol. 21, no. 19, pp. 5036—5046. https://doi.org/10.1093/emboj/cdf524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wada, T., Tachibana, T., Shimura, Y., and Okada, K., Epidermal cell differentiation in Arabidopsis determined by a Myb homolog, CPC Science, 1997, vol. 277, no. 5329, pp. 1113—1116. https://doi.org/10.1126/science.277.5329.1113

    Article  CAS  PubMed  Google Scholar 

  97. Wester, K., Digiuni, S., Geier, F., et al., Functional diversity of R3 single-repeat genes in trichome development, Development, 2009, vol. 136, no. 9, pp. 1487—1496. https://doi.org/10.1242/dev.021733

    Article  CAS  PubMed  Google Scholar 

  98. Morohashi, K., Zhao, M., Yang, M., et al., Participation of the Arabidopsis bHLH factor GL3 in trichome initiation regulatory events, Plant Physiol., 2007, vol. 145, no. 3, pp. 736—746. https://doi.org/10.1104/pp.107.104521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang, S. and Chen, J.-G., Regulation of cell fate determination by single-repeat R3 MYB transcription factors in Arabidopsis,Front. Plant Sci., 2014, vol. 5, pp. 1—12. https://doi.org/10.3389/fpls.2014.00133

    Article  Google Scholar 

  100. Neer, E.J., Schmidt, C.J., Nambudripad, R., and Smith, T.F., Erratum: the ancient regulatory-protein family of WD-repeat proteins, Nature, 1994, vol. 371, no. 6495, pp. 297—300. https://doi.org/10.1038/371297a

    Article  CAS  PubMed  Google Scholar 

  101. Gan, Y., Liu, C., Yu, H., and Broun, P., Integration of cytokinin and gibberellin signalling by Arabidopsis transcription factors GIS, ZFP8 and GIS2 in the regulation of epidermal cell fate, Development, 2007, vol. 134, no. 11, pp. 2073—2081. https://doi.org/10.1242/dev.005017

    Article  CAS  PubMed  Google Scholar 

  102. Zhou, Z., Sun, L., Zhao, Y., et al., Zinc Finger Protein 6 (ZFP6) regulates trichome initiation by integrating gibberellin and cytokinin signaling in Arabidopsis thaliana,New Phytol., 2013, vol. 198, no. 3, pp. 699—708. https://doi.org/10.1111/nph.12211

    Article  CAS  PubMed  Google Scholar 

  103. Englbrecht, C.C., Schoof, H., and Böhm, S., Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome, BMC Genomics, 2004, vol. 5, no. 1, pp. 1—17. https://doi.org/10.1186/1471-2164-5-39

    Article  CAS  Google Scholar 

  104. Maes, L., Nieuwerburgh, F.C.W.V., Zhang, Y., et al., Dissection of the phytohormonal regulation of trichome formation and biosynthesis of the antimalarial compound artemisinin in Artemisia annua plants, New Phytol., 2011, vol. 189, no. 1, pp. 176—189. https://doi.org/10.1111/j.1469-8137.2010.03466.x

    Article  CAS  PubMed  Google Scholar 

  105. Yoshida, Y., Sano, R., Wada, T., et al., Jasmonic acid control of GLABRA3 links inducible defense and trichome patterning in Arabidopsis,Development, 2009, vol. 136, no. 6, pp. 1039—1048. https://doi.org/10.1242/dev.030585

    Article  CAS  PubMed  Google Scholar 

  106. Sun, W., Gao, D., Xiong, Y., et al., An AP2/ERF transcription factor, interacts with OsWOX3B and regulates trichome formation in rice, Mol. Plant, 2017, vol. 10, pp. 1417—1433. https://doi.org/10.1016/j.molp.2017.09.0153

    Article  CAS  PubMed  Google Scholar 

  107. Xie, Y., Yu, X., Jiang, S., et al., OsGL6, a conserved AP2 domain protein, promotes leaf trichome initiation in rice, Biochem. Biophys. Res. Commun., 2020, vol. 522, no. 2, pp. 1—8. https://doi.org/10.1016/j.bbrc.2019.11.125

    Article  CAS  Google Scholar 

  108. Chalvin, C., Drevensek, S., Dron, M., et al., Genetic control of glandular trichome development, Trends Plant Sci., 2020, vol. 25, pp. 477—487. https://doi.org/10.1016/j.tplants.2019.12.025

    Article  CAS  PubMed  Google Scholar 

  109. Ewas, M., Gao, Y., Wang, S., et al., Manipulation of SlMXl for enhanced carotenoids accumulation and drought resistance in tomato, Sci. Bull., 2016, vol. 61, no. 18, pp. 1413—1418. https://doi.org/10.1007/s11434-016-1108-9

    Article  CAS  Google Scholar 

  110. Xu, J. van Herwijnen, Z.O., Dräger, D.B., et al., SlMYC1 regulates type VI glandular trichome formation and terpene biosynthesis in tomato glandular cells, Plant Cell, 2018, vol. 30, no. 12, pp. 2988—3005. https://doi.org/10.1105/tpc.18.00571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yang, C., Li, H., Zhang, J., et al., A regulatory gene induces trichome formation and embryo lethality in tomato, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, no. 29, pp. 11836—11841. https://doi.org/10.1073/pnas.1100532108

    Article  PubMed  PubMed Central  Google Scholar 

  112. Chang, J., Yu, T., Yang, Q., et al., Hair, encoding a single C2H2 zinc-finger protein, regulates multicellular trichome formation in tomato, Plant J., 2018, vol. 96, no. 1, pp. 90—102. https://doi.org/10.1111/tpj.14018

    Article  CAS  PubMed  Google Scholar 

  113. Tominaga-Wada, R., Ishida, T., and Wada, T., New insights into the mechanism of development of Arabidopsis root hairs and trichomes, Int. Rev. Cell Mol. Biol., 2011, vol. 286, pp. 67—106. https://doi.org/10.1016/B978-0-12-385859-7.00002-1

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The article was prepared within the framework of the state assignment of VIR according to the thematic research plan on topic no. 0481-2019-0001 “Genomic and Postgenomic Technologies for Identifying New Genetic Markers of Selectively Significant Properties and New Allelic Variants of Economically Valuable Genes in the Gene Pool of Cultivated Plants and Their Wild Relatives.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Shvachko.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shvachko, N.A., Semilet, T.V. & Tikhonova, N.G. Trichomes of Higher Plants: Homologous Series in Hereditary Variability and Molecular Genetic Mechanisms. Russ J Genet 56, 1359–1370 (2020). https://doi.org/10.1134/S1022795420110083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795420110083

Keywords:

Navigation