Skip to main content
Log in

Quantum mechanics of stationary states of particles in a space–time of classical black holes

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider interactions of scalar particles, photons, and fermions in Schwarzschild, Reissner–Nordström, Kerr, and Kerr–Newman gravitational and electromagnetic fields with a zero and nonzero cosmological constant. We also consider interactions of scalar particles, photons, and fermions with nonextremal rotating charged black holes in a minimal five-dimensional gauge supergravity. We analyze the behavior of effective potentials in second-order relativistic Schrödinger-type equations. In all cases, we establish the existence of the regime of particles “falling” on event horizons. An alternative can be collapsars with fermions in stationary bound states without a regime of particles “falling.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.

Similar content being viewed by others

References

  1. V. P. Neznamov, “Second-order equations for fermions on Schwarzschild, Reissner–Nordström, Kerr, and Kerr–Newman space–times,” Theor. Math. Phys., 197, 1823–1837 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  2. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics [in Russian], Vol. 3, Quantum Mechanics: Non-Relativistic Theory, Fizmatlit, Moscow (1963); English transl., Pergamon, Oxford (1965).

    Google Scholar 

  3. A. M. Perelomov and V. S. Popov, “‘Fall to the center’ in quantum mechanics,” Theor. Math. Phys., 4, 664–677 (1970).

    Article  Google Scholar 

  4. V. P. Neznamov and I. I. Safronov, “Stationary solutions of second-order equations for point fermions in the Schwarzschild gravitational field,” JETP, 127, 647–658 (2018); arXiv:1809.08940v1 [gr-qc] (2018).

    Article  ADS  Google Scholar 

  5. V. P. Neznamov, I. I. Safronov, and V. E. Shemarulin, “Stationary solutions of second-order equations for fermions in Reissner-Nordström space–time,” JETP, 127, 684–704 (2018); arXiv:1810.01960v1 [gr-qc] (2018).

    Article  ADS  Google Scholar 

  6. V. P. Neznamov, I. I. Safronov, and V. E. Shemarulin, “Stationary solutions of the second-order equation for fermions in Kerr–Newman space–time,” JETP, 128, 64–87 (2019); arXiv:1904.05791v1 [gr-qc] (2019).

    Article  ADS  Google Scholar 

  7. N. Deruelle and R. Ruffini, “Quantum and classical relativistic energy states in stationary geometries,” Phys. Lett. B, 52, 437 (1974).

    Article  ADS  Google Scholar 

  8. T. Damour, N. Deruelle, and R. Ruffini, “On quantum resonances in stationary geometries,” Lett. Nuovo Cimento, 15, 257–262 (1976).

    Article  ADS  Google Scholar 

  9. I. M. Ternov, V. R. Khalilov, G. A. Chizhov, and A. B. Gaina, “Finite movement of massive particles in Kerr and Schwarzschild fields,” Sov. Phys. J., 109–114 (1978).

    MATH  Google Scholar 

  10. A. B. Gaina and G. A. Chizhov, “Radial motion in the Schwarzschild field,” Izv. Vuzov. Fizika, 23, No. 4, 120–121 (1980).

    Google Scholar 

  11. I. M. Ternov, A. B. Gaina, and G. A. Chizhov, “Finite motion of electrons in the field of microscopic black holes,” Sov. Phys. J., 23, 695–700 (1980).

    Article  MATH  Google Scholar 

  12. D. V. Gal’tsov, G. V. Pomerantseva, and G. A. Chizhov, “Occupation of quasi-bound states by electrons in a Schwarzschild field,” Sov. Phys. J, 26, 743–745 (1983).

    Article  Google Scholar 

  13. I. M. Ternov and A. B. Gaina, “Energy spectrum of the Dirac equation in the Schwarzschild and Kerr fields,” Sov. Phys. J., 31, 157 (1988).

    Article  MathSciNet  Google Scholar 

  14. A. B. Gaina and O. B. Zaslavskii, “On quasilevels in the gravitational field of a black hole,” Class. Quantum Grav., 9, 667–676 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  15. A. B. Gaina and N. I. Ionescu-Pallas, “The fine and hyperfine structure of fermionic levels in gravitational fields,” Rom. J. Phys., 38, 729–730 (1993).

    Google Scholar 

  16. A. Lasenby, C. Doran, J. Pritchard, A. Caceres, and S. Dolan, “Bound states and decay times of fermions in a Schwarzschild black hole background,” Phys. Rev. D, 72, 105014 (2005).

    Article  ADS  Google Scholar 

  17. S. Dolan and D. Dempsey, “Bound states of the Dirac equation on Kerr spacetime,” Class. Quantum Grav., 32, 184001 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. D. Batic, M. Nowakowski, and K. Morgan, “The problem of embedded eigenvalues for the Dirac equation in the Schwarzschild black hole metric,” Universe, 2, No. 4, 31 (2016); arXiv:1701.03889v1 [gr-qc] (2017).

    Article  ADS  Google Scholar 

  19. F. Finster, J. Smoller, and S.-T. Yau, “Non-existence of time-periodic solutions of the Dirac equation in a Reissner–Nordström black hole background,” J. Math. Phys., 41, 2173–2194 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. F. Finster, N. Kamran, J. Smoller, and S.-T. Yau, “Nonexistence of time-periodic solutions of the Dirac equation in an axisymmetric black hole geometry,” Comm. Pure Appl. Math., 53, 902–929 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  21. F. Finster, N. Kamran, J. Smoller, and S.-T. Yau, “Erratum: Nonexistence of time-periodic solutions of the Dirac equation in an axisymmetric black hole geometry,” Comm. Pure Appl. Math., 53, 1201 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  22. G. T. Horowitz and D. Marolf, “Quantum probes of spacetime singularities,” Phys. Rev. D, 52, 5670–5675 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  23. H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms, Springer, Boston, Mass. (1977).

    Book  MATH  Google Scholar 

  24. R. Penrose, “Gravitational collapse: The role of general relativity,” Riv. Nuovo Cimento, 1, 252–276 (1969).

    Google Scholar 

  25. K. Meetz, “Singular potentials in nonrelativistic quantum mechanics,” Nuovo Cimento, 34, 690–708 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  26. H. Behncke, “Some remarks on singular attractive potentials,” Nuovo Cimento A, 55, 780–785 (1968).

    Article  ADS  Google Scholar 

  27. A. S. Wightman, “Introduction to some aspects of the relativistic dynamics of quantized fields,” in: High Energy Electromagnetic Interactions and Field Theory (Cargèse Lect. Theor. Phys., Cargèse, France, September 1964, B. d’ Espagnat and M. Lévy, eds.), Gordon and Breach, New York (1967), pp. 171–192.

    ADS  Google Scholar 

  28. V. P. Neznamov, I. I. Safronov, and V. Ye. Shemarulin, “Stationary solutions of the second-order equation for fermions in Kerr–Newman space–time,” JETP, 128, 64–87 (2019).

    Article  ADS  Google Scholar 

  29. I. Ya. Pomeranchuk and Y. A. Smorodinsky, “On energy levels in systems with \(Z>137\),” J. Phys. USSR, 9, 97 (1945).

    Google Scholar 

  30. W. Pieper and W. Griener, “Interior electron shells in superheavy nuclei,” Z. Phys., 218, 327–340 (1969).

    Article  ADS  Google Scholar 

  31. Ya. B. Zeldovich and V. S. Popov, “Electronic structure of superheavy atoms,” Sov. Phys. Usp., 14, 673–694 (1972).

    Article  ADS  Google Scholar 

  32. W. Greiner, B. Müller, and J. Rafelski, Quantum Electrodynamics of Strong Fields, Springer, Berlin (1985).

    Book  Google Scholar 

  33. D. Andrae, “Finite nuclear charge density distributions in electronic structure calculations for atoms and molecules,” Phys. Rep., 336, 413–525 (2000).

    Article  ADS  Google Scholar 

  34. R. N. Boyer and R. W. Lindquist, “Maximal analytic extension of the Kerr metric,” J. Math. Phys., 8, 265–281 (1967).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. V. B. Bezerra, H. S. Vieira, and A. A. Costa, “The Klein–Gordon equation in the spacetime of a charged and rotating black hole,” Class. Quantum Grav., 31, 045003 (2014); arXiv:1312.4823v1v1 [gr-qc] (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. A. S. Eddington, “A comparison of Whitehead’s and Einstein’s formulæ,” Nature, 113, 192 (1924).

    Article  ADS  Google Scholar 

  37. D. Finkelstein, “Past–future asymmetry of the gravitational field of a point particle,” Phys. Rev., 110, 965–967 (1958).

    Article  ADS  MATH  Google Scholar 

  38. P. Painlevé, “La mécanique classique et la théorie de la relativité,” C. R. Acad. Sci. (Paris), 173, 677–680 (1921).

    ADS  MATH  Google Scholar 

  39. A. Gullstrand, Allgemeine Lösung des Statischen Einkörperproblems in der Einsteinschen Gravitationstheorie (Arkiv. Mat. Astron. Fys., Vol. 16, No. 8), Almqvist and Wiksell, Stockholm (1922).

    MATH  Google Scholar 

  40. G. Lemaítre, “L’univers en expansion,” Ann. Soc. Sci. Bruxelles A, 53, 51–85 (1933).

    MATH  Google Scholar 

  41. M. D. Kruskal, “Maximal extension of Schwarzschild metric,” Phys. Rev., 119, 1743–1745 (1960).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. G. Szekeres, “On the singularities of a Riemannian manifold,” Publ. Math. Debrecen, 7, 285–301 (1960).

    MathSciNet  MATH  Google Scholar 

  43. M. V. Gorbatenko and V. P. Neznamov, “Quantum mechanical equivalence of the metrics of a centrally symmetric gravitational field,” Theor. Math. Phys., 198, 425–454 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  44. R. P. Kerr, “Gravitational field of a spinning mass as an example of algebraically special metrics,” Phys. Rev. Lett., 11, 237–238 (1963).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. S. A. Teukolsky, “Rotating black holes: Separable wave equations for gravitational and electromagnetic perturbations,” Phys. Rev. Lett., 29, 1114–1118 (1972); “Perturbations of a rotating black hole: I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations,” Astrophys. J., 185, 635–648 (1973).

    Article  ADS  Google Scholar 

  46. W. Kinnersley, “Type \(D\) vacuum metrics,” J. Math. Phys., 10, 1195–1205 (1969).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. E. Newman and R. Penrose, “An approach to gravitational radiation by a method of spin coefficients,” J. Math. Phys., 3, 566–578 (1962).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. O. Lunin, “Maxwell’s equations in the Myers–Perry geometry,” JHEP, 1712, 138 (2017); arXiv:1708.06766v2 [hep-th] (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. S. Chandrasekhar, “The solution of Dirac’s equation in Kerr geometry,” Proc. Roy. Soc. London Ser. A, 349, 571–575 (1976).

    ADS  MathSciNet  Google Scholar 

  50. D. N. Page, “Dirac equation around a charged, rotating black hole,” Phys. Rev. D, 14, 1509–1510 (1976).

    Article  ADS  Google Scholar 

  51. Z. Stuchlík, G. Bao, E. Østgaard, and S. Hledík, “Kerr–Newman–de Sitter black holes with a restricted repulsive barrier of equatorial photon motion,” Phys. Rev. D., 58, 084003 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  52. J. B. Griffiths and J. Podolský, Exact Spacetimes in Einstein’s General Relativity, Cambridge Univ. Press, Cambridge (2009).

    Book  MATH  Google Scholar 

  53. B. Carter, “Global structure of the Kerr family of gravitational fields,” Phys. Rev., 174, 1559–1571 (1968).

    Article  ADS  MATH  Google Scholar 

  54. Z. Stuchlík and S. Hledík, “Equatorial photon motion in the Kerr–Newman spacetimes with a non-zero cosmological constant,” Class. Quantum Grav., 17, 4541–4576 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. G. V. Kraniotis, “The Klein–Gornon–Fock equation in the curved spacetime of the Kerr–Newman (anti) de Sitter black hole,” Class. Quantum Grav., 33, 225011 (2016); arXiv:1602.04830v5 [gr-qc] (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. G. V. Kraniotis, “The massive Dirac equation in the Kerr–Newman–de Sitter and Kerr–Newman black hole spacetimes,” J. Phys. Commun., 3, 035026 (2019); arXiv:1801.03157v5 [gr-qc] (2018).

    Article  Google Scholar 

  57. F. Finster, N. Kamran, J. Smoller, and S.-T. Yau, “Nonexistence of time-periodic solutions of the Dirac equation in an axisymmetric black hole geometry,” Commun. Pure Appl. Math., 53, 902–909 (2000); Erratum, Commun. Pure Appl. Math., 53, 1201 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  58. S. Q. Wu, “Separability of massive field equations for spin-0 and spin-1/2 charged particles in the general nonextremal rotating charged black hole spacetimes in minimal five-dimensional gauged supergravity,” Phys. Rev. D, 80, 084009 (2009); arXiv:0906.2049v4 [hep-th] (2009).

    Article  ADS  Google Scholar 

  59. M. Heusler, Black Holes Uniqueness Theorems, Cambridge Univ. Press, Cambridge (1996).

    Book  MATH  Google Scholar 

  60. H. Quevedo, “Mass quadrupole as a source of naked singularities,” Internat. J. Modern Phys., 20, 1779–1787 (2011); arXiv:1012.4030v1 [gr-qc] (2010).

    Article  ADS  MATH  Google Scholar 

  61. S. Toktarbay and H. Quevedo, “A stationary \(q\)-metric,” Grav. Cosmol., 20, 252–254 (2014); arXiv:1510.04155v1 [gr-qc] (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. V. P. Neznamov and V. E. Shemarulin, “Motion of spin-half particles in the axially symmetric field of naked singularities of the static \(q\)-metric,” Grav. Cosmol., 23, 149–161 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. K. Schwarzschild, “Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen Theorie,” Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, 23, 424–434 (1916).

  64. R. Tolmen, Relativity, Thermodynamics, and Cosmology [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  65. J. L. Synge, ed., Relativity: The General Theory, Interscience, New York (1960).

    MATH  Google Scholar 

  66. M. V. Gorbatenko, “Lattice Dirac matrices and the formalism of the Standard Model [in Russian],” VANT, Ser. Teoret. i Priklad. Fiz., No. 1, 19–30 (2018).

    Google Scholar 

Download references

Acknowledgments

The authors thank E. Yu. Popov for the useful discussions and the help in establishing the final form of some analytic expressions. The authors also thank A. L. Novoselova for the essential technical support in preparing the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Neznamov.

Ethics declarations

The authors declare no conflicts of interest.

A. Effective potential of a Painlevé–Gullstrund field in a Schrödinger-type equation for a scalar particle

We have

$$\begin{aligned} \, &U_{ \mathrm{eff} }^{ \scriptscriptstyle\mathrm{PG} }(\rho)=-\frac{\alpha( \varepsilon ^2-1)}{\rho-2\alpha}- \frac{\alpha\rho \varepsilon ^2}{(\rho-2\alpha)^2}+\frac{1}{2(\rho-2\alpha)^2} \biggl(\frac{\alpha^2}{\rho^2}+\frac{\alpha}{\rho}-1\biggr)+{} \\ &\hphantom{U_{ \mathrm{eff} }^{ \scriptscriptstyle\mathrm{PG} }(\rho){}=}+\frac{1}{2\rho(\rho-2\alpha)} \biggl(1+\frac{\alpha}{\rho}\biggr)-\frac{1}{2\rho(\rho-2\alpha)}l(l+1)+ i\frac{1}{4}\sqrt{\frac{2\alpha}{\rho}}\frac{ \varepsilon }{\rho}, \\ &U_{ \mathrm{eff} }^{ \scriptscriptstyle\mathrm{PG} }|_{\rho\to\infty}=\frac{\alpha}{\rho}(1-2 \varepsilon ^2),\qquad U_{ \mathrm{eff} }^{ \scriptscriptstyle\mathrm{PG} }|_{\rho\to0}=-\frac{1}{8\rho^2}, \\ &U_{ \mathrm{eff} }^{ \scriptscriptstyle\mathrm{PG} }|_{\rho\to 2\alpha}=-\frac{1}{2(\rho-2\alpha)^2} \biggl(\frac{1}{4}+4\alpha^2 \varepsilon ^2\biggr). \end{aligned}$$

B. Effective potentials of gravitational and electromagnetic fields in Schrödinger-type equations for fermions

1. For the Kerr–Newman–(anti-)de Sitter field, in accordance with [6] and Eqs. (113),

$$\begin{aligned} \, U_{ \mathrm{eff} }^{ \scriptscriptstyle\mathrm{KN} }={}&E_{ \mathrm{Schr} }+\frac{3}{8}\frac{1}{B_{ \scriptscriptstyle\mathrm{KN} }^2} \biggl(\frac{dB^{}_{ \scriptscriptstyle\mathrm{KN} }}{dr}\biggr)^2-\frac{1}{4B^{}_{ \scriptscriptstyle\mathrm{KN} }} \frac{d^2B^{}_{ \scriptscriptstyle\mathrm{KN} }}{dr^2}+\frac{1}{4} \frac{d}{dr}(A^{}_{ \scriptscriptstyle\mathrm{KN} }-D^{}_{ \scriptscriptstyle\mathrm{KN} })-{} \nonumber \\ &{}-\frac{1}{4} \frac{(A^{}_{ \scriptscriptstyle\mathrm{KN} }-D^{}_{ \scriptscriptstyle\mathrm{KN} })}{B^{}_{ \scriptscriptstyle\mathrm{KN} }}\frac{dB^{}_{ \scriptscriptstyle\mathrm{KN} }}{dr}+ \frac{1}{8}(A^{}_{ \scriptscriptstyle\mathrm{KN} }-D_{ \scriptscriptstyle\mathrm{KN} })^2+\frac{1}{2}B^{}_{ \scriptscriptstyle\mathrm{KN} }C^{}_{ \scriptscriptstyle\mathrm{KN} }, \end{aligned}$$
(166)
$$\begin{aligned} \, \frac{3}{8}\frac{1}{B_{ \scriptscriptstyle\mathrm{KN} }^2}\biggl(\frac{dB^{}_{ \scriptscriptstyle\mathrm{KN} }}{dr}\biggr)^2={}& \frac{3}{8}\biggl\{\frac{f^{}_{ \scriptscriptstyle\mathrm{KN} }}{\Omega^{}_{ \scriptscriptstyle\mathrm{KN} }+\sqrt{f^{}_{ \scriptscriptstyle\mathrm{KN} }}} \biggl[-\frac{1}{f_{ \scriptscriptstyle\mathrm{KN} }^2}f'^{}_{ \scriptscriptstyle\mathrm{KN} } (\Omega^{}_{ \scriptscriptstyle\mathrm{KN} }+\sqrt{f^{}_{ \scriptscriptstyle\mathrm{KN} }})+{} \nonumber \\ &{}+\frac{1}{f^{}_{ \scriptscriptstyle\mathrm{KN} }}\biggl(\Omega'^{}_{ \scriptscriptstyle\mathrm{KN} }+ \frac{f'^{}_{ \scriptscriptstyle\mathrm{KN} }}{2\,\sqrt{f^{}_{ \scriptscriptstyle\mathrm{KN} }}}\biggr)\biggr]\biggr\}^2, \end{aligned}$$
(167)
$$\begin{aligned} \, -\frac{1}{4}\frac{1}{B^{}_{ \scriptscriptstyle\mathrm{KN} }}\frac{d^2 B^{}_{ \scriptscriptstyle\mathrm{KN} }}{dr^2}={}& -\frac{1}{4}\frac{f^{}_{ \scriptscriptstyle\mathrm{KN} }}{\Omega^{}_{ \scriptscriptstyle\mathrm{KN} }+\sqrt{f^{}_{ \scriptscriptstyle\mathrm{KN} }}} \biggl[\frac{2}{f_{ \scriptscriptstyle\mathrm{KN} }^3}(f'_{ \scriptscriptstyle\mathrm{KN} })^2 (\Omega^{}_{ \scriptscriptstyle\mathrm{KN} }+\sqrt{f^{}_{ \scriptscriptstyle\mathrm{KN} }})-{} \nonumber \\ &{}-\frac{1}{f_{ \scriptscriptstyle\mathrm{KN} }^2}f''^{}_{ \scriptscriptstyle\mathrm{KN} }(\Omega^{}_{ \scriptscriptstyle\mathrm{KN} }+\sqrt{f^{}_{ \scriptscriptstyle\mathrm{KN} }})- \frac{2}{f_{ \scriptscriptstyle\mathrm{KN} }^2}f'^{}_{ \scriptscriptstyle\mathrm{KN} }\biggl(\Omega '^{}_{ \scriptscriptstyle\mathrm{KN} }+ \frac{f'^{}_{ \scriptscriptstyle\mathrm{KN} }}{2\,\sqrt{f^{}_{ \scriptscriptstyle\mathrm{KN} }}}\biggr)+{} \nonumber \\ &{}+\frac{1}{f^{}_{ \scriptscriptstyle\mathrm{KN} }}\biggl(\Omega''^{}_{ \scriptscriptstyle\mathrm{KN} }+ \frac{f''^{}_{ \scriptscriptstyle\mathrm{KN} }}{2\,\sqrt{f^{}_{ \scriptscriptstyle\mathrm{KN} }}} -\frac{(f'_{ \scriptscriptstyle\mathrm{KN} })^2}{4f_{ \scriptscriptstyle\mathrm{KN} }^{3/2}}\biggr)\biggr], \end{aligned}$$
(168)
$$\frac{1}{4}\,\frac{d}{dr}(A-D)=\frac{\lambda}{2} \biggl[\frac{1}{2}\frac{f'^{}_{ \scriptscriptstyle\mathrm{KN} }}{rf_{ \scriptscriptstyle\mathrm{KN} }^{3/3}}+ \frac{1}{r^2f_{ \scriptscriptstyle\mathrm{KN} }^{1/2}}\biggr], $$
(169)
$$-\frac{1}{4}\,\frac{A-D}{B}\,\frac{dB}{dr}=\frac{\lambda}{2rf_{ \scriptscriptstyle\mathrm{KN} }^{1/2}} \biggl(-\frac{f'^{}_{ \scriptscriptstyle\mathrm{KN} }}{f^{}_{ \scriptscriptstyle\mathrm{KN} }}+ \frac{1}{\Omega^{}_{ \scriptscriptstyle\mathrm{KN} }+\sqrt{f^{}_{ \scriptscriptstyle\mathrm{KN} }}}\biggl(\Omega'^{}_{ \scriptscriptstyle\mathrm{KN} }+ \frac{f'^{}_{ \scriptscriptstyle\mathrm{KN} }}{2\,\sqrt{f^{}_{ \scriptscriptstyle\mathrm{KN} }}}\biggr)\biggr), $$
(170)
$$\frac{1}{8}(A-D)^2=\frac{\lambda^2}{2f^{}_{ \scriptscriptstyle\mathrm{KN} }r^2},\qquad \frac{1}{2}BC=-\frac{1}{2f_{ \scriptscriptstyle\mathrm{KN} }^2}(\Omega_{ \scriptscriptstyle\mathrm{KN} }^2-f^{}_{ \scriptscriptstyle\mathrm{KN} }), $$
(171)
where
$$\begin{aligned} \, &f^{}_{ \scriptscriptstyle\mathrm{KN} }=\biggl(1-\frac{\Lambda}{3}r^2\biggr) \biggl(1+\frac{a^2}{r^2}\biggr)-\frac{r_0}{r}+\frac{r_{Q}^2}{r^2}, \\ &f'^{}_{ \scriptscriptstyle\mathrm{KN} }\equiv\frac{df^{}_{ \scriptscriptstyle\mathrm{KN} }}{dr}=-\frac{2\Lambda}{3}r- \frac{2\alpha^2}{3r^3}+\frac{r_0}{r^2}-\frac{2r_Q^2}{r^3}, \\ &f''^{}_{ \scriptscriptstyle\mathrm{KN} }\equiv\frac{d^2f^{}_{ \scriptscriptstyle\mathrm{KN} }}{dr^2}= -\frac{2\Lambda}{3}-\frac{2r_0}{r^3}+\frac{2\alpha^2+6r_Q^2}{r^4}, \\ &\Omega^{}_{ \scriptscriptstyle\mathrm{KN} }=\Xi\biggl[E\biggl(1+\frac{\alpha^2}{r^2}\biggr)- \frac{\alpha m_ \varphi }{r^2}-\frac{qQ}{\Xi r}\biggr], \\ &\Omega'^{}_{ \scriptscriptstyle\mathrm{KN} }\equiv\frac{d\Omega^{}_{ \scriptscriptstyle\mathrm{KN} }}{dr}= \Xi\biggl[-\frac{2E\alpha^2}{r^3}+ \frac{2\alpha m_ \varphi }{r^3}+\frac{qQ}{\Xi r^2}\biggr], \\ &\Omega''^{}_{ \scriptscriptstyle\mathrm{KN} }\equiv\frac{d^2\Omega^{}_{ \scriptscriptstyle\mathrm{KN} }}{dr^2}= \Xi\biggl[\frac{6E\alpha^2}{r^4}-\frac{6\alpha m_ \varphi }{r^4}- \frac{2qQ}{\Xi r^3}\biggr]. \end{aligned}$$

The arithmetic sum of the expressions \(E_{ \mathrm{Schr} }=(E^2-m^2)/2\) and relations (167)–(171) results in an expression for the effective potential \(U_{ \mathrm{eff} }^F\). For the remaining electromagnetic and gravitational fields considered here, the structure of the expressions for the effective potentials is unchanged. Only the expressions for \(f\), \(f'\), \(f''\), \(\Omega\), \(\Omega'\), and \(\Omega''\) change.

2. For the Kerr–(anti-)de Sitter field \((Q=0)\),

$$\begin{aligned} \, &f_{ \scriptscriptstyle\mathrm{K} }=\biggl(1-\frac{\Lambda}{3}r^2\biggr)\biggl(1+ \frac{a^2}{r^2}\biggr)-\frac{r_0}{r},\qquad f'_{ \scriptscriptstyle\mathrm{K} }=-\frac{2\Lambda}{3}r-\frac{2\alpha^2}{3r^{3}}+\frac{r_0}{r^2}, \\ &f''_{ \scriptscriptstyle\mathrm{K} }=-\frac{2\Lambda}{3}-\frac{2r_0}{r^{3}}+\frac{2a^2}{r^4}, \\ &\Omega_{ \scriptscriptstyle\mathrm{K} }=\Xi\biggl[E\biggl(1+\frac{\alpha^2}{r^2}\biggr)- \frac{\alpha m_ \varphi }{r^2}\biggr],\qquad\Omega'_{ \scriptscriptstyle\mathrm{K} }= \Xi\biggl[-\frac{2E\alpha^2}{r^3}+\frac{2\alpha m_ \varphi }{r^3}\biggr], \\ &\Omega''_{ \scriptscriptstyle\mathrm{K} }=\Xi\biggl[\frac{6E\alpha^2}{r^4}- \frac{6\alpha m_ \varphi }{r^4}\biggr]. \end{aligned}$$

3. For the Reissner–Nordström–(anti-)de Sitter field \((a=0)\),

$$\begin{aligned} \, &f_{ \scriptscriptstyle\mathrm{RN} }=1-\frac{\Lambda}{3}r^2-\frac{r_0}{r}+ \frac{r_Q^2}{r^2},\qquad f'_{ \scriptscriptstyle\mathrm{RN} }=-\frac{2\Lambda}{3}r+ \frac{r_0}{r^2}-\frac{2r_Q^2}{r^3}, \\ &f''_{ \scriptscriptstyle\mathrm{RN} }=-\frac{2\Lambda}{3}-\frac{2r_0}{r^3}+\frac{6r_Q^2}{r^4}, \\ &\Omega_{ \scriptscriptstyle\mathrm{RN} }=\Xi E-\frac{qQ}{r},\qquad \Omega'_{ \scriptscriptstyle\mathrm{RN} }=\frac{qQ}{r^2},\qquad \Omega''_{ \scriptscriptstyle\mathrm{RN} }=-\frac{2qQ}{r^3},\qquad\lambda=\kappa, \end{aligned}$$
where \(\kappa\) is the separation constant,
$$\begin{aligned} \, \kappa=\mp1,\mp2,\dots=\begin{cases}-(l-1),&j=l+\dfrac{1}{2}, \\ l,&j=l-\dfrac{1}{2},\end{cases} \end{aligned}$$
and \(j\) and \(l\) are the quantum numbers of the total and orbital momenta of a spin-1/2 particle.

4. For the Schwarzschild–(anti) de Sitter field (\(Q=0\), \(a=0\)),

$$\begin{aligned} \, &f_{ \scriptscriptstyle\mathrm{S} }=1-\frac{\Lambda}{3}r^2 -\frac{r_0}{r},\qquad f'_{ \scriptscriptstyle\mathrm{S} }=-\frac{2\Lambda}{3}r+\frac{r_0}{r^2},\qquad f''_{ \scriptscriptstyle\mathrm{S} }=-\frac{2\Lambda}{3}-\frac{2r_0}{r^{3}}, \\ &\Omega_{ \scriptscriptstyle\mathrm{S} }=\Xi E,\qquad \Omega'_{ \scriptscriptstyle\mathrm{S} }= \Omega''_{ \scriptscriptstyle\mathrm{S} }=0,\qquad\lambda=\kappa. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbatenko, M.V., Neznamov, V.P. Quantum mechanics of stationary states of particles in a space–time of classical black holes. Theor Math Phys 205, 1492–1526 (2020). https://doi.org/10.1134/S0040577920110070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577920110070

Keywords

Navigation