Skip to main content

Advertisement

Log in

Alloy anodes for sodium-ion batteries

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Sodium-ion batteries (SIBs) have emerged as one of the most promising candidates for next-generation energy storage systems because sodium is abundant in nature. The practical application of SIBs critically depends on developing robust electrode materials with high specific capacity and long cycling life, developing suitable anode materials is even more challenging. Alloy-type anodes are attractive for their high gravimetric and volumetric specific capacities, demonstrating great potential for high-energy SIBs, however, huge volume swelling hampered their practical application. Given the encouraging breakthroughs on alloy anodes for SIBs, herein, we present a review of the up-to-date progress and works carried out with alloy-based anode materials for SIBs. We review the synthetic strategies and their detailed electrochemical performance. In particular, we extensively reveal the important roles of alloy-based anodes in the development of SIBs. Research progress of alloy-type anodes and their compounds for sodium storage is summarized. Specific efforts to enhance the electrochemical performance of the alloy-based anode materials are discussed. Finally, we proposed multi-component alloys/high-entropy alloys (HEAs) as further research directions for alloy-based anodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Copyright 2019, Royal Society of Chemistry. Reproduced with permission Ref. [156]. Copyright 2017, Royal Society of Chemistry

Fig. 13

Similar content being viewed by others

References

  1. Wang PF, You Y, Yin XY, Guo YG. Layered oxide cathodes for sodium-ion batteries: phase transition, air stability, and performance. Adv Energy Mater. 2018;8(8):1701912.

    Google Scholar 

  2. Yu XY, Lou XW. Mixed metal sulfides for electrochemical energy storage and conversion. Adv Energy Mater. 2018;8(3):1701592.

    Google Scholar 

  3. Fang YJ, Yu XY, Lou XW. Formation of hierarchical Cu-doped CoSe2 microboxes via sequential ion exchange for high-performance sodium-ion batteries. Adv Mater. 2018;30(21):1706668.

    Google Scholar 

  4. Wang SB, Fang YJ, Wang X, Lou XW. Hierarchical microboxes constructed by sns nanoplates coated with nitrogen-doped carbon for efficient sodium storage. Angew Chem Int Ed. 2019;58(3):760.

    CAS  Google Scholar 

  5. Luo W, Shen F, Bommier C, Zhu HL, Hu LB. Na-ion battery anodes: materials and electrochemistry. Acc Chem Res. 2016;49(2):231.

    CAS  Google Scholar 

  6. Parant JP, Olazcuag R, Devalette M, Fouassier C, Hagenmuller P. New phases of formula NaxMnO2. J Solid State Chem. 1971;3(1):1.

    CAS  Google Scholar 

  7. Whittingham MS. Chemistry of intercalation compounds - metal guests in chalcogenide hosts. Prog Solid State Chem. 1978;12(1):41.

    CAS  Google Scholar 

  8. Delmas C, Fouassier C, Hagenmuller P. Structural classification and properties of the layered oxides. Phys A B&C. 1980;99(1–4):81.

    CAS  Google Scholar 

  9. Fouassier C, Delmas C, Hagenmuller P. Structural development and physical-properties of AxMO2 phases (A = Na, K) (M = Cr, Mn, CO) (x less-than or equal-to one). Mater Res Bull. 1975;10(6):443.

    CAS  Google Scholar 

  10. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB. Lixcoo2 “(oless-thanxless-than-or-equal-to1) - a new cathode material for batteries of high-energy density. Mater Res Bull. 1980;15(6):783.

    CAS  Google Scholar 

  11. Jin J, Yu SJ, Shi ZQ, Wang CY, Chong CB. Lignin-based electrospun carbon nanofibrous webs as free-standing and binder-free electrodes for sodium ion batteries. J Power Sources. 2014;272:800.

    CAS  Google Scholar 

  12. Matsushita T, Ishii Y, Kawasaki S. Electrochemical insertion of sodium ion into nanocarbon materials for sodium ion batterie. ECS Trans. 2013;50(15):1.

    Google Scholar 

  13. Wang HG, Wu Z, Meng FL, Ma DL, Huang XL, Wang LM. Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries. Chemsuschem. 2013;6(1):56.

    CAS  Google Scholar 

  14. Jian ZL, Liu P, Li FJ, Chen MW, Zhou HS. Monodispersed hierarchical Co3O4 spheres intertwined with carbon nanotubes for use as anode materials in sodium-ion batteries. J Mater Chem A. 2014;2(34):13805.

    CAS  Google Scholar 

  15. Jian ZL, Zhao B, Liu P, Li F, Zheng MB, Chen MW, Shi Y, Zhou HS. Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries. Chem Commun. 2014;50(10):1215.

    CAS  Google Scholar 

  16. Chen H, Jiang J, Zhang L, Wan H, Qi T, Xia D. Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors. Nanoscale. 2013;5(19):8879.

    CAS  Google Scholar 

  17. Shen LF, Yu L, Wu HB, Yu XY, Zhang XG, Lou XW. Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat Commun. 2015;6:6694.

    CAS  Google Scholar 

  18. Staszak-Jirkovsky J, Malliakas CD, Lopes PP, Danilovic N, Kota SS, Chang KC, Genorio B, Strmcnik D, Stamenkovic VR, Kanatzidis MG, Markovic NM. Design of active and stable Co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat Mater. 2016;15(2):197.

    CAS  Google Scholar 

  19. Zhang L, Hu X, Chen C, Guo H, Liu X, Xu G, Zhong H, Cheng S, Wu P, Meng J, Huang Y, Dou S, Liu H. In operando mechanism analysis on nanocrystalline silicon anode material for reversible and ultrafast sodium storage. Adv Mater. 2017;29(5):1604708.

    Google Scholar 

  20. Jung SC, Kim HJ, Kang YJ, Han YK. Advantages of Ge anode for Na-ion batteries: Ge vs. Si and Sn. J Alloys Compd. 2016;688:158.

    CAS  Google Scholar 

  21. Nam DH, Kim TH, Hong KS, Kwon HS. Template-free electrochemical synthesis of sn nanofibers as high-performance anode materials for Na-ion batteries. ACS Nano. 2014;8(11):11824.

    CAS  Google Scholar 

  22. Zhao L, Zhao JM, Hu YS, Li H, Zhou ZB, Armand M, Chen LQ. Disodium terephthalate (Na2C8H4O4) as high performance anode material for low-cost room-temperature sodium-ion battery. Adv Energy Mater. 2012;2(8):962.

    CAS  Google Scholar 

  23. Park Y, Shin DS, Woo SH, Choi NS, Shin KH, Oh SM, Lee KT, Hong SY. Sodium terephthalate as an organic anode material for sodium ion batteries. Adv Mater. 2012;24(26):3562.

    CAS  Google Scholar 

  24. Wu X, Ma J, Ma Q, Xu S, Hu YS, Sun Y, Li H, Chen H, Huang X. A spray drying approach for the synthesis of a Na2C6H2O4/CNT nanocomposite anode for sodium-ion batteries. J Mater Chem A. 2015;3(25):13193.

    CAS  Google Scholar 

  25. Chihara K, Kitajou A, Gocheva ID, Okada S, Yamaki JI. Cathode properties of Na3M2(PO4)2F-3 [M = Ti, Fe, V] for sodium-ion batteries. J Power Sources. 2013;227:80.

    CAS  Google Scholar 

  26. Chen C, Fu K, Lu Y, Zhu J, Xue L, Hu Y. Use of a tin antimony alloy-filled porous carbon nanofiber composite as an anode in sodium-ion batteries. RSC Adv. 2015;5(39):30793.

    CAS  Google Scholar 

  27. Li W, Chou SL, Wang JZ, Kim JH, Liu HK, Dou SX. Sn4+xP3@amorphous Sn-P composites as anodes for sodium-ion batteries with low cost, high capacity, long life, and superior rate capability. Adv Mater. 2014;26(24):4037.

    CAS  Google Scholar 

  28. Qian J, Chen Y, Wu L, Cao Y, Ai X, Yang H. High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem Commun. 2012;48(56):7070.

    CAS  Google Scholar 

  29. Oh SM, Myung ST, Jang MW, Scrosati B, Hassoun J, Sun YK. An advanced sodium-ion rechargeable battery based on a tin-carbon anode and a layered oxide framework cathode. Phys Chem Chem Phys. 2013;15(11):3827.

    CAS  Google Scholar 

  30. Ramireddy T, Xing T, Rahman MM, Chen Y, Dutercq Q, Gunzelmann D. Phosphorus-carbon nanocomposite anodes for lithium-ion and sodium-ion batteries. Mater Chem A. 2015;3(10):5572.

    CAS  Google Scholar 

  31. Chevrier VL, Ceder G. Challenges for Na-ion negative electrodes. J Electrochem Soc. 2011;158(9):A1011.

    CAS  Google Scholar 

  32. Komaba S, Ishikawa T, Yabuuchi N, Murata W, Ito A, Ohsawa Y. Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. ACS Appl Mater Interfaces. 2011;3(11):4165.

    CAS  Google Scholar 

  33. Ji L, Gu M, Shao Y, Li X, Engelhard MH, Arey BW, Wang W, Nie Z, Xiao J, Wang C, Zhang JG, Liu J. Controlling SEI formation on SnSb-porous carbon nanofibers for improved Na ion storage. Adv Mater. 2014;26(18):2901.

    CAS  Google Scholar 

  34. Darwiche A, Bodenes L, Madec L, Monconduit L, Martinez H. Impact of the salts and solvents on the SEI formation in Sb/Na batteries: an XPS analysis. Electrochim Acta. 2016;207:284.

    CAS  Google Scholar 

  35. Winkler V, Kilibarda G, Schlabach S, Szabó DV, Hanemann T, Bruns M. Surface analytical study regarding the solid electrolyte interphase composition of nanoparticulate SnO2 anodes for Li-ion batteries. J Phys Chem C. 2016;120(43):24706.

    CAS  Google Scholar 

  36. Bodenes L, Darwiche A, Monconduit L, Martinez H. The solid electrolyte interphase a key parameter of the high performance of Sb in sodium-ion batteries: comparative X-ray photoelectron spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries. J Power Sources. 2015;273:14.

    CAS  Google Scholar 

  37. Zhang Y, Wang H, Luo Z, Tan HT, Li B, Sun S, Li Z, Zong Y, Xu ZJ, Yang Y, Khor KA, Yan Q. An air-stable densely packed phosphorene-graphene composite toward advanced lithium storage properties. Adv Energy Mater. 2016;6(12):1600453.

    Google Scholar 

  38. Zhao Q, Huang Y, Hu X. A Si/C nanocomposite anode by ball milling for highly reversible sodium storage. Electrochem Commun. 2016;70:8.

    CAS  Google Scholar 

  39. Lim CH, Huang TY, Shao PS, Chien JH, Weng YT, Huang HF, Hwang BJ, Wu NL. Experimental study on sodiation of amorphous silicon for use as sodium-ion battery anode. Electrochim Acta. 2016;211:265.

    CAS  Google Scholar 

  40. Chen T, Liu Y, Pan L, Lu T, Yao YF, Sun Z, Chua DHC, Chen Q. Electrospun carbon nanofibers as anode materials for sodium ion batteries with excellent cycle performance. J Mater Chem. 2014;2(12):4117.

    CAS  Google Scholar 

  41. Chen W, Deng D. Carbonized common filter paper decorated with Sn@C nanospheres as additive-free electrodes for sodium-ion batteries. Carbon. 2015;87:70.

    CAS  Google Scholar 

  42. Zhu HL, Jia Z, Chen YC, Weadock N, Wan JY, Vaaland O, Han XG, Li T, Hu LB. Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Lett. 2013;13(7):3093.

    CAS  Google Scholar 

  43. Darwiche A, Marino C, Sougrati MT, Fraisse B, Stievano L, Monconduit L. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. J Am Chem Soc. 2012;134(51):20805.

    CAS  Google Scholar 

  44. Kim Y, Park Y, Choi A, Choi NS, Kim J, Lee J, Ryu JH, Oh SM, Lee KT. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv Mater. 2013;25(22):3045.

    CAS  Google Scholar 

  45. Yang HX, Li JS, Guo T. Evolution of microstructure and hardness in a dual-phase Al0.5CoCrFeNi high-entropy alloy with different grain sizes. Rare Met. 2020;39(2):156.

    CAS  Google Scholar 

  46. Wu L, Lu HY, Xiao LF, Ai XP, Yang HX, Cao YL. Electrochemical properties and morphological evolution of pitaya-like Sb@C microspheres as high-performance anode for sodium ion batteries. J Mater Chem A. 2015;3(10):5708.

    CAS  Google Scholar 

  47. Kim H, Ding Z, Lee M, Lim K, Yoon G, Kang K. Recent progress in electrode materials for sodium-ion batteries. Adv Energy Mater. 2016;6(19):1600943.

    Google Scholar 

  48. Ellis LD, Wilkes BN, Hatchard TD, Obrovac MN. In situ XRD study of silicon, lead and bismuth negative electrodes in nonaqueous sodium cells. J Electrochem Soc. 2014;161(3):A416.

    CAS  Google Scholar 

  49. Jung SC, Jung DS, Choi JW, Han YK. Atom-level understanding of the sodiation process in silicon anode material. Phys Chem Lett. 2014;5(7):1283.

    CAS  Google Scholar 

  50. Fu Y, Wei Q, Zhang G, Sun S. Advanced phosphorus-based materials for lithium/sodium-ion batteries: recent developments and future perspectives. Adv Energy Mater. 2018;8(13):1702849.

    Google Scholar 

  51. Liu Y, Xu Y, Zhu Y, Culver J, Lundgren C, Xu K, Wang C. Tin-coated viral nanoforests as sodium-ion battery anodes. ACS Nano. 2013;7(4):3627.

    CAS  Google Scholar 

  52. Wu L, Hu XH, Qian JF, Pei F, Wu FY, Mao RJ, Ai XP, Yang HX, Cao YL. Sb-C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries. Energy Environ Sci. 2014;7(1):323.

    CAS  Google Scholar 

  53. Sun J, Zheng G, Lee H, Liu N, Wang H, Yao H, Yang H, Cui Y. Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano Lett. 2014;14(8):4573.

    CAS  Google Scholar 

  54. Abel PR, Lin YM, de Souza T. Nanocolumnar germanium thin films as a high-rate sodium-ion battery anode material. J Phys Chem C. 2013;117(37):18885.

    CAS  Google Scholar 

  55. Wang XY, Fan L, Gong DC, Zhu J, Zhang QF, Lu BA. Core-shell Ge@graphene@TiO2 nanofibers as a high-capacity and cycle-stable anode for lithium and sodium ion battery. Adv Funct Mater. 2016;26(7):1104.

    CAS  Google Scholar 

  56. Yue C, Yu YJ, Sun SB, He X, Chen BB. High performance 3D Si/Ge nanorods array anode buffered by TiN/Ti interlayer for sodium-ion batteries. Adv Funct Mater. 2015;25(9):1386.

    CAS  Google Scholar 

  57. Liu JL. Hierarchical N-doping germanium/carbon nanofibers as anode for high-performance lithium-ion and sodium-ion batteries. Nanotechnology. 2020;31:015402.

    CAS  Google Scholar 

  58. Sung GK, Nam KH, Choi JH, Park CM. Germanium telluride: layered high-performance anode for sodium-ion batteries. Electrochim Acta. 2020;333:135393.

    Google Scholar 

  59. Li XW, Li WW, Shen PF, Yang LC, Li YY, Shi JC, Zhang HY. Layered GeP-black P(Ge2P3): an advanced binary-phase anode for Li/Na-storage. Ceram Int. 2019;45(12):15711.

    CAS  Google Scholar 

  60. Li WW, Li XW, Liao J, Zhao B. Structural design of Ge-based anodes with chemical bonding for high-performance Na-ion batteries. Energy Storage Materials. 2019;20:380.

    Google Scholar 

  61. Li WW, Ke LB, Wei YQ, Guo SH. Highly reversible sodium storage in a GeP5/C composite anode with large capacity and low voltage. J Mater Chem A. 2017;5(9):4413.

    CAS  Google Scholar 

  62. Baggetto L, Keum JK, Browning JF, Veith GM. Germanium as negative electrode material for sodium-ion batteries. Electrochem Commun. 2013;34:41.

    CAS  Google Scholar 

  63. Lu X, Adkins ER, He Y. Germanium as a sodium ion battery material: in situ TEM reveals fast sodiation kinetics with high capacity. Chem Mater. 2016;28(4):12361242.

    Google Scholar 

  64. Su D, Dou S, Wang G. Bismuth: a new anode for the Na-ion battery. Nano Energy. 2015;12:88.

    CAS  Google Scholar 

  65. Dai R, Wang Y, Da P, Wu H, Xu M, Zheng G. Indirect growth of mesoporous Bi@C core-shell nanowires for enhanced lithium-ion storage. Nanoscale. 2014;6(21):13236.

    CAS  Google Scholar 

  66. Ni JF, Bi XX, Jiang Y, Li L, Lu J. Bismuth chalcogenide compounds Bi2X3 (X = O, S, Se): applications in electrochemical energy storage. Nano Energy. 2017;34:356.

    CAS  Google Scholar 

  67. Cheng L, Liu HJ, Tan XJ, Zhang J, Wei J, Lv HY. Thermoelectric properties of a monolayer bismuth. J Phys Chem C. 2014;118(2):904.

    CAS  Google Scholar 

  68. Akturk E, Akturk OU, Ciraci S. Single and bilayer bismuthene: stability at high temperature and mechanical and electronic properties. Phys Rev B. 2016;94(1):014115.

    Google Scholar 

  69. Liu SN, Luo ZG, Guo JH. Bismuth nanosheets grown on carbon fiber cloth as advanced binder-free anode for sodium-ion batteries. Electrochem Commun. 2017;81:10.

    CAS  Google Scholar 

  70. Zhao YB, Manthiram A. High-capacity, high-rate Bi-Sb alloy anodes for lithium-ion and sodium-ion batteries. Chem Mater. 2015;27(8):3096.

    CAS  Google Scholar 

  71. Wang CC, Wang LB, Li FJ, Cheng FY, Chen J. Bulk bismuth as a high-capacity and ultralong cycle-life anode for sodium-ion batteries by coupling with glyme-based electrolytes. Adv Mater. 2017;29(35):1702212.

    Google Scholar 

  72. Xiong PX, Bai PX, Li A. Bismuth nanoparticle@carbon composite anodes for ultralong cycle life and high-rate sodium-ion batteries. Adv Mater. 2019;31(48):1904771.

    CAS  Google Scholar 

  73. Yang H, Xu R, Yao Y. Multicore-shell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium- and potassium-ion anodes. Adv Funct Mater. 2019;29(13):1809195.

    Google Scholar 

  74. Guo ST, Li H, Lu Y, Liu ZF, Hu XL. Lattice softening enables highly reversible sodium storage in anti-pulverization Bi-Sb alloy/carbon nanofibers. Energy Storage Mater. 2020;27:270.

    Google Scholar 

  75. Wang LB, Wang CC, Li FJ. In situ synthesis of Bi nanoflakes on Ni foam for sodium-ion batteries. Chem Commun. 2018;54(1):38.

    Google Scholar 

  76. Zhang W, Yan W, Jiang HQ, Wang C, Zhou Y, Ke FH, Cong HJ, Deng HX. Uniform Bi-Sb alloy nanoparticles synthesized from MOFs by laser metallurgy for sodium-ion batteries. ACS Sustain Chem Eng. 2020;8(1):335.

    CAS  Google Scholar 

  77. Yang H, Chen LW, He FX, Zhang JQ, Feng YZ, Zhao LK, Wang B, He LX, Zhang QB, Yu Y. Optimizing the void size of yolk-shell Bi@Void@C nanospheres for high-power-density sodium-ion batteries. Nano Lett. 2020;20(1):758.

    CAS  Google Scholar 

  78. Jin YQ, Yuan HC, Lan JL, Yu YH, Lin YH, Yang XP. Bio-inspired spider-web-like membranes with a hierarchical structure for high performance lithium/sodium ion battery electrodes: the case of 3D freestanding and binder-free bismuth/CNF anodes. Nanoscale. 2017;9(35):13298.

    CAS  Google Scholar 

  79. Sottmann Jonas, Herrmann Matthias, Vajeeston Ponniah. How crystallite size controls the reaction path in nonaqueous metal ion batteries: the example of sodium bismuth alloying. Chem Mater. 2016;28(8):2750.

    CAS  Google Scholar 

  80. Park JS, Kang YC. Uniquely structured Sb nanoparticle-embedded carbon/reduced graphene oxide composite shell with empty voids for high performance sodium-ion storage. Chem Eng J. 2019;373:227.

    CAS  Google Scholar 

  81. Meng WJ, Guo MQ, Chen JJ, Li DS, Wang ZH, Yang FQ. Porous Sb with three-dimensional Sb nanodendrites as electrode material for high-performance Li/Na-ion batteries. Nanotechnology. 2020;31:175401.

    CAS  Google Scholar 

  82. Ning XM, Zhou XS, Luo J. Ion-assisted construction of Sb/N-doped graphene as an anode for Li/Na ion batteries. Nanotechnology. 2020;31(9):095404.

    CAS  Google Scholar 

  83. Chen BC, Qin HY, Li K. Yolk-shelled Sb@C nanoconfined nitrogen/sulfur co-doped 3D porous carbon microspheres for sodium-ion battery anode with ultralong high-rate cycling. Nano Energy. 2019;66:104133.

    CAS  Google Scholar 

  84. Li HM, Wang KL, Zhou M, Li W, Tao HW, Wang RX, Cheng SJ, Jiang K. Facile tailoring of multidimensional nanostructured Sb for sodium storage applications. ACS Nano. 2019;13(8):9533.

    CAS  Google Scholar 

  85. Wang ZY, Dong KZ, Wang D. A nanosized SnSb alloy confined in N-doped 3D porous carbon coupled with ether-based electrolytes toward high-performance potassium-ion batteries. J Mater Chem A. 2019;7(23):14309.

    CAS  Google Scholar 

  86. Li XY, Sun ML, Ni JF, Li L. Template-free construction of self-supported Sb prisms with stable sodium storage. Adv Energy Mater. 2019;9(24):1901096.

    Google Scholar 

  87. Wu ZB, Johannessen B, Zhang WC, Pang WK, Mao JF, Liu HK, Guo ZP. In situ incorporation of nanostructured antimony in an N-doped carbon matrix for advanced sodium-ion batteries. J Mater Chem A. 2019;7(20):12842.

    CAS  Google Scholar 

  88. Chen H, Chen N, Zhang MN, Ml Li, Gao Y, Wang CZ, Chen G, Du F. Ti3C2Tx MXene decorated with Sb nanoparticles as anodes material for sodium-ion batteries. Nanotechnology. 2019;30(13):134001.

    CAS  Google Scholar 

  89. Kalisvaart WP, Olsen BC, Luber EJ, Burik JM. Sb-Si alloys and multilayers for sodium-ion battery anodes. J. ACS Appl. Energy Mater. 2019;2(3):2205.

    CAS  Google Scholar 

  90. Song JH, Xiao DD, Jia HP, Zhu GM, Engelhard M, Xiao BW, Feng S, Li DS, Reed D, Sprenkle VL. A comparative study of pomegranate Sb@C yolk- shell microspheres as Li and Na- ion battery anodes. Nanoscale. 2019;11(1):348.

    CAS  Google Scholar 

  91. Ma WS, Yin KB, Gao H. Alloying boosting superior sodium storage performance in nanoporous tin-antimony alloy anode for sodium ion batteries. Nano Energy. 2018;54:349.

    CAS  Google Scholar 

  92. Zhang Y, Gao H, Niu JZ, Ma WS, Shi YZ, Song MJ, Peng ZQ, Zhang ZH. Scalable fabrication of core-shell Sb@Co(OH)2 nanosheet anodes for advanced sodium-ion batteries via magnetron sputtering. ACS Nano. 2018;12(11):11678.

    CAS  Google Scholar 

  93. Luo W, Li F, Gaumet JJ, Magri P, Diliberto S, Zhou L, Mai LQ. Bottom-up confined synthesis of nanorod-in-nanotube structured Sb@N-C for durable lithium and sodium storage. Adv Energy Mater. 2018;8(19):1703237.

    Google Scholar 

  94. Ma WS, Wang JW, Gao H, Niu JZ, Luo FK, Peng ZQ, Zhang ZH. A mesoporous antimony-based nanocomposite for advanced sodium ion batteries. Energy Storage Mater. 2018;13:247.

    Google Scholar 

  95. Dong SH, Li CX, Li ZQ, Zhang LY, Yin LW. Mesoporous hollow Sb/ZnS@C core-shell heterostructures as anodes for high-performance sodium-ion batteries. Small. 2018;14(16):1704517.

    Google Scholar 

  96. Zhang M, Ouyang LZ, Zhu M, Fang F, Liu JW, Liu ZW. A phosphorus and carbon composite containing nanocrystalline Sb as a stable and high-capacity anode for sodium ion batteries. J. Mater. Chem. A. 2020;8(1):443.

    CAS  Google Scholar 

  97. Eldho E, Sivaramapanicker S, Srinivasan M. Melt-spun Fe-Sb intermetallic alloy anode for performance enhanced sodium-ion batteries ACS Appl. Mater. Interfaces. 2017;9(45):39399.

    Google Scholar 

  98. Lin ZH, Wang GH, Xiong XH. Ni-polymer gels-derived hollow NiSb alloy confined in 3D interconnected carbon as superior sodium-ion battery anode. Electrochim Acta. 2018;269:225.

    CAS  Google Scholar 

  99. Li PH, Yu LT, Ji SM. Facile synthesis of three-dimensional porous interconnected carbon matrix embedded with Sb nanoparticles as superior anode for Na-ion batteries. Chem Eng J. 2019;374:502.

    CAS  Google Scholar 

  100. Zhu YJ, Han XG, Xu YH. Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode. ACS Nano. 2013;7(7):6378.

    CAS  Google Scholar 

  101. Wang LB, Wang CC, Zhang N. High anode performance of in situ formed Cu2Sb nanoparticles integrated on Cu foil via replacement reaction for sodium-ion batteries. ACS Energy Lett. 2017;2:256.

    CAS  Google Scholar 

  102. Phoebe KA, John MG, Darwiche A. Tracking sodium-antimonide phase transformations in sodium-ion anodes: insights from operando pair distribution function analysis and solid-state NMR spectroscopy. J Am Chem Soc. 2016;138(7):2352.

    Google Scholar 

  103. Liu XX, Li N, Yang C. Sn accommodation in tunable-void and porous graphene bumper for high-performance Li- and Na-ion storage. J Alloy Compd. 2019;790(25):1043.

    CAS  Google Scholar 

  104. Changhyeon K, Icpyo K, Huihun K. A self-healing Sn anode with an ultra-long cycle life for sodium-ion batteries. J Mater Chem A. 2018;6(45):22809.

    Google Scholar 

  105. Jeffrey M, Amy LP. Electrodeposition of pure phase SnSb exhibiting high stability as a sodium-ion battery anode. Chem Commun. 2019;55(48):6938.

    Google Scholar 

  106. Qin J, Wang TS, Liu DY. A top-down strategy toward SnSb in-plane nanoconfined 3D N-doped porous graphene composite microspheres for high performance Na-ion battery anode. Adv Mater. 2018;30(9):1704670.

    Google Scholar 

  107. Choi JH, Ha CW, Choi HY. Porous carbon-free SnSb anodes for high-performance Na-ion batteries. J Power Sources. 2018;386:34.

    CAS  Google Scholar 

  108. Xu YH, Zhu YJ, Liu YH. Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries. Adv Energy Mater. 2013;3(1):128.

    CAS  Google Scholar 

  109. Huang B, Yang JW, Li YW. Carbon encapsulated Sn-Co alloy: a stabilized tin-based material for sodium storage. Mater Lett. 2018;210:321.

    CAS  Google Scholar 

  110. Xiao LF, Cao YL, Xiao J. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem Commun. 2012;48(27):3321.

    CAS  Google Scholar 

  111. Ji LW, Gu M, Shao YY. Controlling SEI formation on SnSb-porous carbon nanofibers for improved Na ion storage. Adv Mater. 2014;26(18):2901.

    CAS  Google Scholar 

  112. Xie HZ, Tan XH, Erik JL. β-SnSb for sodium ion battery anodes: phase transformations responsible for enhanced cycling stability revealed by in situ TEM. ACS Energy Lett. 2018;3(7):1670.

    CAS  Google Scholar 

  113. Liu YC, Zhang N, Jiao LF. Ultrasmall Sn nanoparticles embedded in carbon as high-performance anode for sodium-ion batteries. Adv Funct Mater. 2015;25(2):214.

    CAS  Google Scholar 

  114. Joshua MS, Martin M. Investigating sodium storage mechanisms in tin anodes: a combined pair distribution function analysis, density functional theory, and solid-state NMR approach. J Am Chem Soc. 2017;139(21):7273.

    Google Scholar 

  115. Wang JW, Liu XH, Mao SX. Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. Nano Lett. 2012;12(11):5897.

    CAS  Google Scholar 

  116. Zhu J, Deng D. Amorphous bimetallic Co3Sn2 nanoalloys are better than crystalline counterparts for sodium storage. J Phys Chem C. 2015;119(37):21323.

    CAS  Google Scholar 

  117. Fukunishi M, Yabuuchi N, Dahbi M. Impact of the cut-off voltage on cyclability and passive interphase of Sn-polyacrylate composite electrodes for sodium-ion batteries. J Phys Chem C. 2016;120:15017.

    CAS  Google Scholar 

  118. Huang JQ, Guo XY, Du XQ. Nanostructures of solid electrolyte interphases and their consequences for microsized Sn anodes in sodium ion batteries. Energy Environ Sci. 2019;12(5):1550.

    CAS  Google Scholar 

  119. Sun Y, Guo SH, Zhou HS. Exploration of advanced electrode materials for rechargeable sodium-ion batteries. Adv Energy Mater. 2019;9(23):1800212.

    Google Scholar 

  120. Xu Y, Swaans E, Basak S. Reversible Na-ion uptake in Si nanoparticles. Adv Energy Mater. 2016;6(2):1501436.

    Google Scholar 

  121. Laura CL, Laure M, Vincent S. Si and Ge-Based anode materials for Li-. Na-, and K-ion batteries: a perspective from structure to electrochemical mechanism small. 2020;16(5):1905260.

    Google Scholar 

  122. Huang SZ, Liu LX, Zheng Y. Efficient sodium storage in rolled-up amorphous Si nanomembranes. Adv Mater. 2018;30(20):1706637.

    Google Scholar 

  123. Legrain F, Malyi OI, Manzhos S. Comparative computational study of the diffusion of Li, Na, and Mg in silicon including the effect of vibrations. Solid State Ionics. 2013;253:157.

    CAS  Google Scholar 

  124. Jung SC, Jung DS, Choi JW. Atom-level understanding of the sodiation process in silicon anode material. Chem Lett. 2014;5(7):12831288.

    Google Scholar 

  125. Zhu Y, Wen Y, Fan X. Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries. ACS Nano. 2015;9(3):3254.

    CAS  Google Scholar 

  126. Qian J, Wu X, Cao Y. High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew Chem Int Ed. 2013;52(17):463.

    Google Scholar 

  127. Extance P, Elliott SR. Pressure dependence of the electrical properties of amorphous phosphorus prepared by chemical transport in a low-pressure hydrogen plasma. Philos Mag B. 1981;43(3):485.

    CAS  Google Scholar 

  128. Fu Y, Wei Q, Zhang G. Advanced phosphorus-based materials for lithium/sodium-ion batteries: recent developments and future perspectives. Adv Energy Mater. 2018;8(13):1703058.

    Google Scholar 

  129. Song J, Yu Z, Gordin ML. Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries. Nano Lett. 2014;14(11):6329.

    CAS  Google Scholar 

  130. Li WJ, Chou SL, Wang JZ. Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. Nano Lett. 2013;13:5480.

    CAS  Google Scholar 

  131. Zhou J, Liu X, Cai W. Wet-chemical synthesis of hollow red-phosphorus nanospheres with porous shells as anodes for high-performance lithium-ion and sodium-ion batteries. Adv Mater. 2017;29(29):1700214.

    Google Scholar 

  132. Duho K, Zhang K, Maenghyo C. Critical design factors for kinetically favorable P-based compounds toward alloying with Na ions for high-power sodium-ion batteries. Energy Environ Sci. 2019;12(4):1326.

    Google Scholar 

  133. Zhao RZ, Qian Z, Liu ZY. Molecular-level heterostructures assembled from layered black phosphorene and Ti3C2 MXene as superior anodes for high-performance sodium ion batteries. Nano Energy. 2019;65:104037.

    CAS  Google Scholar 

  134. Zhang YH, Liu BH, Timur B. Red phosphorus confined in N-doped multi-cavity mesoporous carbon for ultrahigh-performance sodium-ion batteries. J Power Sources. 2020;450:227696.

    CAS  Google Scholar 

  135. Zhou D, Xue LP, Wang N. Robustly immobilized Ni2P nanoparticles in porous carbon networks promotes high-performance sodium-ion storage. J Alloy Compd. 2019;776:912.

    CAS  Google Scholar 

  136. Jin H, Lu H, Wu WY. Tailoring conductive networks within hollow carbon nanospheres to host phosphorus for advanced sodium ion batteries. Nano Energy. 2020;70:104569.

    CAS  Google Scholar 

  137. Xu Q, Sun JK, Yue FS. Stable sodium storage of red phosphorus anode enabled by a dual-protection strategy. ACS Appl Mater Interfaces. 2018;10(36):30479.

    CAS  Google Scholar 

  138. Duan J, Deng SY, Wu WY. Chitosan derived carbon matrix encapsulated CuP2 nanoparticles for sodium-ion storage. ACS Appl Mater Interfaces. 2019;11(13):12415.

    CAS  Google Scholar 

  139. Zhang SL, Li XY, Yang WT. Novel synthesis of red phosphorus nanodot/Ti3C2Tx MXenes from low-cost Ti3SiC2 MAX phases for superior lithium- and sodium-ion batteries. ACS Appl Mater Interfaces. 2019;11:42086.

    CAS  Google Scholar 

  140. Nam KH, Yoon H, Cheol-Min P. Zinc–phosphides as outstanding sodium-ion battery anodes. ACS Appl Mater Interfaces. 2020;12:15053.

    CAS  Google Scholar 

  141. Liu BQ, Zhang Q, Li L. Encapsulating red phosphorus in ultralarge pore volume hierarchical porous carbon nanospheres for lithium/sodium-ion half/full batteries. ACS Nano. 2019;13(11):13513.

    CAS  Google Scholar 

  142. Liu WL, Ju SL, Yu XB. Phosphorus-amine-based synthesis of nanoscale red phosphorus for application to sodium-ion batteries. ACS Nano. 2020;14(1):974.

    CAS  Google Scholar 

  143. Song TB, Chen H, Li Z, Xu QZ. Creating an air-stable sulfur-doped black phosphorus-TiO2 composite as high-performance anode material for sodium-ion storage. Adv Funct Mater. 2019;29(22):1900535.

    Google Scholar 

  144. Li H, Liu AM, Ren XF. A black phosphorus/Ti3C2 MXene nanocomposite for sodium-ion batteries: a combined experimental and theoretical study. Nanoscale. 2019;11(42):19862.

    CAS  Google Scholar 

  145. Kim Y, Choi A. Tin phosphide as a promising anode material for Na-ion batteries. Adv Mater. 2014;26(24):4139.

    CAS  Google Scholar 

  146. Martin M, Griffith KJ, Pickar CJ. Ab initio study of phosphorus anodes for lithium- and sodium-ion batteries. Chem Mater. 2016;28(7):2011.

    Google Scholar 

  147. Dahbi M, Yabuuchi N, Fukunishi M. Black phosphorus as a high-capacity and high-capability negative electrode for sodium-ion batteries: investigation of the electrode/electrolyte interface. Chem Mater. 2016;28(6):1625.

    CAS  Google Scholar 

  148. Xu GL, Chen Z, Zhong GM. Nanostructured black phosphorus/ketjenblack-multiwalled carbon nanotubes composite as high performance anode material for sodium-ion batteries. Nano Lett. 2016;16(6):3955.

    CAS  Google Scholar 

  149. Li L, Zheng Y, Zhang SL. Recent progress on sodium ion batteries: potential high-performance anodes. Energy Environ Sci. 2018;11(9):2310.

    CAS  Google Scholar 

  150. Luo W, Shen F, Clement B. Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries. Acc Chem Res. 2016;49:231.

    CAS  Google Scholar 

  151. Tan H, Chen D, Rui X. Peering into alloy anodes for sodium-ion batteries: current trends, challenges, and opportunities. Adv Funct Mater. 2019;29(14):1808745.

    Google Scholar 

  152. Zhu XC, Sun M, Ni JF. Materials based on group IVA elements for alloying-type sodium storage. Sci china Chem. 2018;61(12):1494.

    CAS  Google Scholar 

  153. Zheng SM, Feng WQ, Wang SQ. Elastic properties of high entropy alloys by MaxEnt approach. Comput Mater Sci. 2018;142:332.

    CAS  Google Scholar 

  154. Jia YJ, Chen HN, Liang XD. Microstructure and wear resistance of CoCrNbNiW high-entropy alloy coating prepared by laser melting deposition. Rare Met. 2018;38(12):1153.

    Google Scholar 

  155. Eldho E, Sivaramapanicker S, Hao R. Microstructurally engineered nanocrystalline Fe–Sn–Sb anodes: towards stable high energy density sodium-ion batteries. J Mater Chem A. 2019;7(23):14145.

    Google Scholar 

  156. Marcin WO, Francesco M, McGettrick JD. Synergic effect of Bi, Sb and Te for the increased stability of bulk alloying anodes for sodium-ion batteries. J Mater Chem A. 2017;5(44):23198.

    Google Scholar 

  157. Martine ML, Parzycha G, Franziska T. Na–Sb–Sn ternary phase diagram at room temperature for potential anode materials in sodium-ion batteries. Solid State Ionics. 2014;268:261.

    CAS  Google Scholar 

  158. Farbod B, Cui K, Kalisvaart WP. Anodes for sodium ion batteries based on tin-germanium-antimony alloys. ACS Nano. 2014;8(5):4415.

    CAS  Google Scholar 

  159. Zheng XM, Rong WQ, You JH. An electrodeposition strategy for the controllable and cost-effective fabrication of Sb-Fe-P anodes for Li ion batteries. Electrochim Acta. 2019;309:469.

    CAS  Google Scholar 

  160. Su H, Ma YH, Zhao ZP. Anchoring ternary CoNiSn alloys nanoparticles on hollow architectured SnO2 for exceptional lithium storage performance. J Power Sources. 2020;450:227626.

    CAS  Google Scholar 

  161. Ma WQ, Wang YH, Yang YJ. Temperature-dependent Li storage performance in nanoporous Cu-Ge-Al alloy. ACS Appl Mater Interfaces. 2019;11(9):9073.

    CAS  Google Scholar 

  162. Cao YD. An investigation of the Fe-Mn-Si system for Li-ion battery negative electrodes. J Electrochem Soc. 2019;166:A21.

    CAS  Google Scholar 

  163. Zheng XM, Zhang PY, Wang LK. Superior Li storage anode based on novel Fe-Sn-P alloy prepared by electroplating. Electrochim Acta. 2017;247:314.

    CAS  Google Scholar 

  164. Chen XQ, Ru Q, Wang Z. Ternary Sn-Sb-Co alloy particles embedded in reduced graphene oxide as lithium ion battery anodes. Mater Lett. 2017;191(15):218.

    CAS  Google Scholar 

  165. Zhao W, Li P, Liu ZW. High performance antimony-bismuth-tin positive electrode for liquid metal battery. Chem Mater. 2018;30(24):8739.

    CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Key Research Program of Nanjing IPE Institute of Green Manufacturing Industry (No. E0010718)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bao Wang or Kai-Ming Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, SM., Tian, YR., Liu, YX. et al. Alloy anodes for sodium-ion batteries. Rare Met. 40, 272–289 (2021). https://doi.org/10.1007/s12598-020-01605-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01605-z

Keywords

Navigation