Skip to main content
Log in

Implementation of quantum walks on IBM quantum computers

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The development of universal quantum computers has achieved remarkable success in recent years, culminating with the quantum supremacy reported by Google. Now it is possible to implement short-depth quantum circuits with dozens of qubits and to obtain results with significant fidelity. Quantum walks are good candidates to be implemented on the available quantum computers. In this work, we implement discrete-time quantum walks with one and two interacting walkers on cycles, two-dimensional lattices, and complete graphs on IBM quantum computers. We are able to obtain meaningful results using the cycle, the two-dimensional lattice, and the complete graph with 16 nodes each, which require 4-qubit quantum circuits up to depth 100.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. https://qiskit.org/.

References

  1. Motwani, R., Raghavan, P.: Randomized algorithms. ACM Comput. Surv. 28(1), 33–37 (1996)

    Article  Google Scholar 

  2. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput. 37(1), 210–239 (2007)

    Article  MathSciNet  Google Scholar 

  3. Portugal, R.: Quantum Walks and Search Algorithms. Springer, Cham (2018)

    Book  Google Scholar 

  4. Arute, F., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019)

    Article  ADS  Google Scholar 

  5. Douglas, B.L., Wang, J.B.: Efficient quantum circuit implementation of quantum walks. Phys. Rev. A 79, 052335 (2009)

    Article  ADS  Google Scholar 

  6. Regensburger, A., Bersch, C., Hinrichs, B., Onishchukov, G., Schreiber, A., Silberhorn, C., Peschel, U.: Photon propagation in a discrete fiber network: an interplay of coherence and losses. Phys. Rev. Lett. 107, 233902 (2011)

    Article  ADS  Google Scholar 

  7. Schreiber, A., Gábris, A., Rohde, P.P., Laiho, K., Štefaňák, M., Potoček, V., Hamilton, C., Jex, I., Silberhorn, C.: A 2D quantum walk simulation of two-particle dynamics. Science 336(6077), 55–58 (2012)

    Article  ADS  Google Scholar 

  8. Lorz, L., Meyer-Scott, E., Nitsche, T., Potoček, V., Gábris, A., Barkhofen, S., Jex, I., Silberhorn, C.: Photonic quantum walks with four-dimensional coins. Phys. Rev. Res. 1, 033036 (2019)

    Article  Google Scholar 

  9. Preskill, John: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  10. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48(2), 1687–1690 (1993)

    Article  ADS  Google Scholar 

  11. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58, 915–928 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  12. Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: Proceedings 45th Annual IEEE Symposium on Foundations of Computer Science, FOCS’04, pp. 32–41. Washington (2004)

  13. Patel, A., Raghunathan, K.S., Rungta, P.: Quantum random walks do not need a coin toss. Phys. Rev. A 71, 032347 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  14. Portugal, R., Santos, R.A.M., Fernandes, T.D., Gonçalves, D.N.: The staggered quantum walk model. Quantum Inf. Process. 15(1), 85–101 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  15. Abreu, A., Cunha, L., de Figueiredo, C., Kowada, L., Marquezino, F., Posner, D., Portugal, R.: The graph tessellation cover number: chromatic bounds, efficient algorithms and hardness. Theor. Comput. Sci. 801, 175–191 (2020)

    Article  MathSciNet  Google Scholar 

  16. Portugal, R., Fernandes, T.D.: Quantum search on the two-dimensional lattice using the staggered model with Hamiltonians. Phys. Rev. A 95, 042341 (2017)

    Article  ADS  Google Scholar 

  17. He, Y., Luo, M.-X., Zhang, E., Wang, H.-K., Wang, X.-F.: Decompositions of \(n\)-qubit Toffoli gates with linear circuit complexity. Int. J. Theor. Phys. 56(7), 2350–2361 (2017)

    Article  MathSciNet  Google Scholar 

  18. Luo, Ming-Xing, Li, Hui-Ran: Comment on “Linear-depth quantum circuits for \(n\)-qubit toffoli gates with no ancilla”. Phys. Rev. A 94, 026301 (2016)

    Article  ADS  Google Scholar 

  19. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2000)

    MATH  Google Scholar 

  20. Balu, R., Castillo, D., Siopsis, G.: Physical realization of topological quantum walks on IBM-Q and beyond. Quantum Sci. Technol. 3(3), 035001 (2018)

    Article  ADS  Google Scholar 

  21. Georgopoulos, K., Zuliani, P.: One-dimensional Hadamard quantum walk on a cycle with rotational implementation. arXiv:1911.00305 (2019)

  22. Shakeel, A.: Efficient and scalable quantum walk algorithms via the quantum Fourier transform. arXiv:1912.00978 (2019)

  23. Matjeschk, R., Schneider, Ch., Enderlein, M., Huber, T., Schmitz, H., Glueckert, J., Schaetz, T.: Experimental simulation and limitations of quantum walks with trapped ions. N. J. Phys. 14(3), 035012 (2012)

    Article  Google Scholar 

  24. Flurin, E., Ramasesh, V.V., Hacohen-Gourgy, S., Martin, L.S., Yao, N.Y., Siddiqi, I.: Observing topological invariants using quantum walks in superconducting circuits. Phys. Rev. X 7, 031023 (2017)

    Google Scholar 

  25. Dadras, S., Gresch, A., Groiseau, C., Wimberger, S., Summy, G.S.: Experimental realization of a momentum-space quantum walk. Phys. Rev. A 99, 043617 (2019)

    Article  ADS  Google Scholar 

  26. Satoh, T., Ohkura, Y., Meter, R.V.: Subdivided phase oracle for NISQ search algorithms. arXiv:2001.06575 (2020)

  27. Portugal, R., de Oliveira, M.C., Moqadam, J.K.: Staggered quantum walks with Hamiltonians. Phys. Rev. A 95, 012328 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  28. Kitagawa, T., Rudner, M.S., Berg, E., Demler, E.: Exploring topological phases with quantum walks. Phys. Rev. A 82, 033429 (2010)

    Article  ADS  Google Scholar 

  29. Kitagawa, T., Broome, M.A., Fedrizzi, A., Rudner, M.S., Berg, E., Kassal, I., Aspuru-Guzik, A., Demler, E., White, A.G.: Observation of topologically protected bound states in photonic quantum walks. Nat. Commun. 3 (2012)

  30. Khatibi Moqadam, J., Rezakhani, A.T.: Boundary-induced coherence in the staggered quantum walk on different topologies. Phys. Rev. A 98, 012123 (2018)

    Article  ADS  Google Scholar 

  31. Di Franco, C., Mc Gettrick, M., Busch, Th: Mimicking the probability distribution of a two-dimensional Grover walk with a single-qubit coin. Phys. Rev. Lett. 106, 080502 (2011)

    Article  Google Scholar 

  32. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325–328 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Valardan, M. A. V. Macedo Jr., I. J. Araújo Jr., and M. Paredes for useful discussions. JKM acknowledges financial support from CNPq Grant PCI-DA No. 304865/2019-2. RP acknowledges financial support from CNPq Grant No. 303406/2015-1 and Faperj Grant CNE No. E-26/202.872/2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Portugal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Appendix

Proposition 1

The decomposition of P given by Eq. (11) in terms of multi-controlled Toffoli gates is

$$\begin{aligned} P = X_{k-1}\,C_{k-1}(X_{k-2})C_{k-2,k-1}(X_{k-3})\cdots C_{1,\ldots ,k-1}\,(X_{0}), \end{aligned}$$

where k is the number of qubits.

Proof

From Eq. (11), we have

$$\begin{aligned} P|q\rangle ={\left\{ \begin{array}{ll} |q+1\rangle , &{} \text {if }q<N-1 \\ |0\rangle , &{}\text {if }q=N-1, \end{array}\right. } \end{aligned}$$
(34)

where \(|q\rangle \) is a generic state of the computational basis in decimal notation. The binary representation of q is \((q_0\ldots q_{k-1})_2\). In the case \(q=N-1\), the binary representation of the state is \(|(1\ldots 1)_2\rangle \) and it is straightforward to verify that the circuit of P in Fig. 2 generates the desired output state \(|(0\ldots 0)_2\rangle \). Suppose that \(q<N-1\). The action of P on a generic qubit state is

$$\begin{aligned} P|q_0\cdots q_{k-1}\rangle= & {} C_{1,\ldots ,k-1}(X_{0})|q_{0}\rangle \cdots C_{k-2,k-1}(X_{k-3})\\&|q_{k-3}\rangle \,\,C_{k-1}(X_{k-2})|q_{k-2}\rangle \,\,X_{k-1}|q_{k-1}\rangle . \end{aligned}$$

Simplifying the right-hand side by using Eq. (15) gives

$$\begin{aligned} |q_{0}\oplus (q_1\cdots q_{k-1})\rangle \ldots |q_{k-3}\oplus (q_{k-2}\cdot q_{k-1})\rangle |q_{k-2}\oplus q_{k-1}\rangle |q_{k-1}\oplus 1\rangle . \end{aligned}$$

On the other hand, the addition \(q+1\) in the binary representation, namely \((q_0 \cdots q_{k-1})_2\oplus 1\) yields

figure a

where the gray-colored bits in the first line of the table show the carries. The result (given in the fourth line of the table) is obtained by performing the addition of the rightmost bits of the table, that is, adding bits \(q_{k-1}\) and 1. The result is \(q_{k-1}\oplus 1\) and the carry is \(q_{k-1}\), which is placed over \(q_{k-2}\) as a gray-colored bit. Then, bits \(q_{k-1}\) and \(q_{k-2}\) are added that gives \(q_{k-2}\oplus q_{k-1}\) and the carry is \(q_{k-2}\cdot q_{k-1}\), which is placed over \(q_{k-3}\). The addition goes on until the leftmost bit is reached. The final result coincides with the action of P on \(|q_0\ldots q_{k-1}\rangle \), which proves the proposition. \(\square \)

B Appendix

This appendix describes function \(\texttt {new}\_\texttt {mcrz}\), which decomposes the multi-controlled \(R_z\) gate, and function \(\texttt {new}\_\texttt {mcz}\), which decomposes the multi-controlled Z gate. Those functions use the same syntax of functions \(\texttt {mcrz}\) and \(\texttt {mcz}\) implemented in Qiskit. Note that our implementation uses fewer CNOTs.

figure b
figure c

C Appendix

Figure 13 depicts our results for a staggered quantum walk on the 8-cycle with \(\theta =\pi /4\) and initial state \((|3\rangle +|4\rangle )/\sqrt{2}\) using three qubits of the ourense quantum computer. The two high peaks moving in opposite direction display the well-known signature of quantum walks on the one-dimensional lattice.

Fig. 13
figure 13

Probability distribution of eight steps using exact calculations (blue) and the ourense quantum computer (red) using 3 qubits. The first plot refers to the preparation of the initial state (i.s.) \((|3\rangle +|4\rangle )/\sqrt{2}\). The following plots are successive steps

Table 6 shows the corresponding fidelities, where d and h are the total variation and Hellinger distances, respectively. After the sixth step, the fidelity is high, but the output of the quantum computer is worthless. This shows that the fidelity is not a good measure when the exact probability distribution is almost flat.

Table 6 Fidelities between the probability distributions generated by the ourense quantum computer and the exact simulation for one walker on a 8-vertex cycle up to step 8

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acasiete, F., Agostini, F.P., Moqadam, J.K. et al. Implementation of quantum walks on IBM quantum computers. Quantum Inf Process 19, 426 (2020). https://doi.org/10.1007/s11128-020-02938-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02938-5

Keywords

Navigation