Skip to main content

Advertisement

Log in

Deletion of Kv10.2 Causes Abnormal Dendritic Arborization and Epilepsy Susceptibility

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The abnormal function of the voltage-gated potassium channel Kv10.2 can induce epilepsy. However, the physiological function of Kv10.2 in the central nervous system remains unclear. In this study, we found that Kv10.2 knockout (KO) increased the complexity of neurons in the CA3 subarea of hippocampus. Kv10.2 KO led to enlarged somata, elongated dendritic length, and increased the number of dendritic tips in cultured rat hippocampus neurons. Kv10.2 KO also increased Synapsin I and PSD95 protein density in cultured rat hippocampal neurons. Whole cell patch-clamp recordings of brain slices in the CA3 subarea of hippocampus revealed that Kv10.2 KO increased the amplitude of spontaneous excitatory postsynaptic currents (sEPSC) and miniature excitatory postsynaptic currents (mEPSC), depolarized the resting membrane potential and increased the action potential firing, reduced the rheobase and increased the input resistance, which results in enhanced neuronal excitability. Furthermore, we made electroencephalogram (EEG) recordings of brain activity in freely moving rats before and after inducing seizures by pentylenetetrazole (PTZ) injection. Kv10.2 KO rats dramatically increased the EEG amplitude during epilepsy. Behavioral observation after seizure induction revealed that Kv10.2 KO rats demonstrated shortened onset latency, prolonged duration, and increased seizure severity when compared with wild type rats. Therefore, this study provides a new link between Kv10.2 and neuronal morphology and higher intrinsic excitability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Perks A, Cheema S, Mohanraj R (2012) Anaesthesia and epilepsy. Br J Anaesth 108(4):562–571. https://doi.org/10.1093/bja/aes027

    Article  CAS  PubMed  Google Scholar 

  2. Stafstrom CE, Carmant L (2015) Seizures and epilepsy: an overview for neuroscientists. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a022426

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zamudio SR, Pichardo-Macias LA, Diaz-Villegas V, Flores-Navarrete IL, Guzman-Velazquez S (2019) Subchronic cerebrolysin treatment alleviates cognitive impairments and dendritic arborization alterations of granular neurons in the hippocampal dentate gyrus of rats with temporal lobe epilepsy. Epilepsy Behav 97:96–104. https://doi.org/10.1016/j.yebeh.2019.05.025

    Article  PubMed  Google Scholar 

  4. Tang GB, Zeng YQ, Liu PP, Mi TW, Zhang SF, Dai SK, Tang QY, Yang L, Xu YJ, Yan HL, Du HZ, Teng ZQ, Zhou FQ, Liu CM (2017) The histone H3K27 demethylase UTX regulates synaptic plasticity and cognitive behaviors in mice. Front Mol Neurosci 10:267. https://doi.org/10.3389/fnmol.2017.00267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kinjo ER, Rodriguez PXR, Dos Santos BA, Higa GSV, Ferraz MSA, Schmeltzer C, Rudiger S, Kihara AH (2018) New insights on temporal lobe epilepsy based on plasticity-related network changes and high-order statistics. Mol Neurobiol 55(5):3990–3998. https://doi.org/10.1007/s12035-017-0623-2

    Article  CAS  PubMed  Google Scholar 

  6. Sanjay M, Neymotin SA, Krothapalli SB (2015) Impaired dendritic inhibition leads to epileptic activity in a computer model of CA3. Hippocampus 25(11):1336–1350. https://doi.org/10.1002/hipo.22440

    Article  CAS  PubMed  Google Scholar 

  7. Goldberg EM, Coulter DA (2013) Mechanisms of epileptogenesis: a convergence on neural circuit dysfunction. Nat Rev Neurosci 14(5):337–349. https://doi.org/10.1038/nrn3482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang X, Bertaso F, Yoo JW, Baumgartel K, Clancy SM, Lee V, Cienfuegos C, Wilmot C, Avis J, Hunyh T, Daguia C, Schmedt C, Noebels J, Jegla T (2010) Deletion of the potassium channel Kv12.2 causes hippocampal hyperexcitability and epilepsy. Nat Neurosci 13(9):1056–1058. https://doi.org/10.1038/nn.2610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McCormick DA, Contreras D (2001) On the cellular and network bases of epileptic seizures. Annu Rev Physiol 63:815–846

    Article  CAS  Google Scholar 

  10. Sun L, Jiang S, Tang X, Zhang Y, Qin L, Jiang X, Yu AC (2016) The nanoscale observation of the three-dimensional structures of neurosynapses, membranous conjunctions between cultured hippocampal neurons and their significance in the development of epilepsy. Mol Neurobiol 53(10):7137–7157. https://doi.org/10.1007/s12035-015-9588-1

    Article  CAS  PubMed  Google Scholar 

  11. Meier JC, Semtner M, Winkelmann A, Wolfart J (2014) Presynaptic mechanisms of neuronal plasticity and their role in epilepsy. Front Cell Neurosci 8:164–168. https://doi.org/10.3389/fncel.2014.00164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fassio A, Raimondi A, Lignani G, Benfenati F, Baldelli P (2011) Synapsins: from synapse to network hyperexcitability and epilepsy. Semin Cell Dev Biol 22(4):408–415. https://doi.org/10.1016/j.semcdb.2011.07.005

    Article  CAS  PubMed  Google Scholar 

  13. Wei A, Jegla T, SALKOFF L, (1996) Eight potassium channel families revealed by the C. elegans genome project. Neuropharmacology 35:805–829

    Article  CAS  Google Scholar 

  14. Veeramah KR, Johnstone L, Karafet TM, Wolf D, Sprissler R, Salogiannis J, Barth-Maron A, Greenberg ME, Stuhlmann T, Weinert S, Jentsch TJ, Pazzi M, Restifo LL, Talwar D, Erickson RP, Hammer MF (2013) Exome sequencing reveals new causal mutations in children with epileptic encephalopathies. Epilepsia 54(7):1270–1281. https://doi.org/10.1111/epi.12201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang Y, Vasylyev DV, Dib-Hajj F, Veeramah KR, Hammer MF, Dib-Hajj SD, Waxman SG (2013) Multistate structural modeling and voltage-clamp analysis of epilepsy/autism mutation Kv10.2-R327H demonstrate the role of this residue in stabilizing the channel closed state. J Neurosci 33(42):16586–16593. https://doi.org/10.1523/JNEUROSCI.2307-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu Y, Duan Y, Du D, Chen F (2020) Rescuing Kv10.2 protein changes cognitive and emotional function in kainic acid-induced status epilepticus rats. Epilepsy Behav 106:106894. https://doi.org/10.1016/j.yebeh.2019.106894

    Article  PubMed  Google Scholar 

  17. Engel J Jr, Thompson PM, Stern JM, Staba RJ, Bragin A, Mody I (2013) Connectomics and epilepsy. Curr Opin Neurol 26(2):186–194. https://doi.org/10.1097/WCO.0b013e32835ee5b8

    Article  PubMed  PubMed Central  Google Scholar 

  18. Morimoto K, Fahnestock M, Racine RJ (2004) Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol 73(1):1–60. https://doi.org/10.1016/j.pneurobio.2004.03.009

    Article  CAS  PubMed  Google Scholar 

  19. Sun QJ, Duan RS, Wang AH, Shang W, Zhang T, Zhang XQ, Chi ZF (2009) Alterations of NR2B and PSD-95 expression in hippocampus of kainic acid-exposed rats with behavioural deficits. Behav Brain Res 201(2):292–299. https://doi.org/10.1016/j.bbr.2009.02.027

    Article  CAS  PubMed  Google Scholar 

  20. Tomov P, Pena RF, Roque AC, Zaks MA (2016) Mechanisms of self-sustained oscillatory states in hierarchical modular networks with mixtures of electrophysiological cell types. Front Comput Neurosci 10:23. https://doi.org/10.3389/fncom.2016.00023

    Article  PubMed  PubMed Central  Google Scholar 

  21. Silva MM, Rodrigues B, Fernandes J, Santos SD, Carreto L, Santos MAS, Pinheiro P, Carvalho AL (2019) MicroRNA-186-5p controls GluA2 surface expression and synaptic scaling in hippocampal neurons. Proc Natl Acad Sci U S A 116(12):5727–5736. https://doi.org/10.1073/pnas.1900338116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu J, Du YL, Xu JW, Hu XG, Gu LF, Li XM, Hu PH, Liao TL, Xia QQ, Sun Q, Shi L, Luo JH, Xia J, Wang Z, Xu J (2019) Neuroligin 3 regulates dendritic outgrowth by modulating Akt/mTOR signaling. Front Cell Neurosci 13:518–534. https://doi.org/10.3389/fncel.2019.00518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kwan V, Meka DP, White SH, Hung CL, Holzapfel NT, Walker S, Murtaza N, Unda BK, Schwanke B, Yuen RKC, Habing K, Milsom C, Hope KJ, Truant R, Scherer SW, Calderon de Anda F, Singh KK (2016) DIXDC1 phosphorylation and control of dendritic morphology are impaired by rare genetic variants. Cell Rep 17(7):1892–1904. https://doi.org/10.1016/j.celrep.2016.10.047

    Article  CAS  PubMed  Google Scholar 

  24. Alese OO, Mabandla MV (2019) Upregulation of hippocampal synaptophysin, GFAP and mGluR3 in a pilocarpine rat model of epilepsy with history of prolonged febrile seizure. J Chem Neuroanat 100:101659. https://doi.org/10.1016/j.jchemneu.2019.101659

    Article  CAS  PubMed  Google Scholar 

  25. Ren WW, Liu Y, Li BM (2012) Stimulation of alpha(2A)-adrenoceptors promotes the maturation of dendritic spines in cultured neurons of the medial prefrontal cortex. Mol Cell Neurosci 49(2):205–216. https://doi.org/10.1016/j.mcn.2011.10.001

    Article  CAS  PubMed  Google Scholar 

  26. Bauer CK, Schwarz JR (2018) Ether-a-go-go K(+) channels: effective modulators of neuronal excitability. J Physiol 596(5):769–783. https://doi.org/10.1113/JP275477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. de Oliveira RM, Martin S, de Oliveira CL, Milani H, Schiavon AP, Joca S, Pardo LA, Stuhmer W, Del Bel EA (2012) Eag1, Eag2, and SK3 potassium channel expression in the rat hippocampus after global transient brain ischemia. J Neurosci Res 90(3):632–640. https://doi.org/10.1002/jnr.22772

    Article  CAS  PubMed  Google Scholar 

  28. Jimenez-Garduno AM, Mitkovski M, Alexopoulos IK, Sanchez A, Stuhmer W, Pardo LA (1838) Ortega A (2014) KV10.1 K(+)-channel plasma membrane discrete domain partitioning and its functional correlation in neurons. Biochim Biophys Acta 3:921–931. https://doi.org/10.1016/j.bbamem.2013.11.007

    Article  CAS  Google Scholar 

  29. Liu Y, Schubert J, Sonnenberg L, Helbig KL, Hoei-Hansen CE, Koko M, Rannap M, Lauxmann S, Huq M, Schneider MC, Johannesen KM, Kurlemann G, Gardella E, Becker F, Weber YG, Benda J, Moller RS, Lerche H (2019) Neuronal mechanisms of mutations in SCN8A causing epilepsy or intellectual disability. Brain 142(2):376–390. https://doi.org/10.1093/brain/awy326

    Article  PubMed  Google Scholar 

  30. Gerbatin RR, Silva LFA, Hoffmann MS, Della-Pace ID, do Nascimento PS Kegler A de Zorzi VN Cunha JM Botelho P Neto JBT Furian AF Oliveira MS Fighera MR Royes LFF (2019) Delayed creatine supplementation counteracts reduction of GABAergic function and protects against seizures susceptibility after traumatic brain injury in rats. Prog Neuropsychopharmacol Biol Psychiatry 92:328–338. https://doi.org/10.1016/j.pnpbp.2019.02.004

    Article  CAS  PubMed  Google Scholar 

  31. Ogiwara I, Miyamoto H, Tatsukawa T, Yamagata T, Nakayama T, Atapour N, Miura E, Mazaki E, Ernst SJ, Cao D, Ohtani H, Itohara S, Yanagawa Y, Montal M, Yuzaki M, Inoue Y, Hensch TK, Noebels JL, Yamakawa K (2018) Nav1.2 haplodeficiency in excitatory neurons causes absence-like seizures in mice. Commun Biol. https://doi.org/10.1038/s42003-018-0099-2

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shiono S, Williamson J, Kapur J, Joshi S (2019) Progesterone receptor activation regulates seizure susceptibility. Ann Clin Transl Neurol 6(7):1302–1310. https://doi.org/10.1002/acn3.50830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Shanghai Municipal Science and Technology Commission (Grant No. 16010500600).

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript. All persons designated as authors qualify for authorship, and all of those who qualify for authorship are listed.

Corresponding author

Correspondence to Fuxue Chen.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Ethical Approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 520 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Tang, Y., Yan, J. et al. Deletion of Kv10.2 Causes Abnormal Dendritic Arborization and Epilepsy Susceptibility. Neurochem Res 45, 2949–2958 (2020). https://doi.org/10.1007/s11064-020-03143-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03143-7

Keywords

Navigation