Skip to main content
Log in

Failure Mechanisms of APS-YSZ-CoNiCrAlY Thermal Barrier Coating Under Isothermal Oxidation and Solid Particle Erosion

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The high-temperature oxidation and solid particle erosion of thermal barrier coating (TBC) system which consists of a 8 wt.% yttria-partially stabilized zirconia (YSZ) top coat and CoNiCrAlY bond coat deposited on Inconel 718 substrate via air plasma spraying (APS) process are studied experimentally. Isothermal oxidation tests of the APS-TBCs are conducted at 1050, 1100 and 1150 °C in air for up to 1970 h. Solid particle erosion tests are also performed on both as-deposited and heat-treated APS-TBC specimens at selected particle impingement angles and velocities in room temperature. The scanning electron microscopy (SEM) analyses of the cross sections of the APS-TBC specimens after the oxidation tests show the formation of thermally grown oxide (TGO) scale due to the oxidation of CoNiCrAlY bond coat, and the oxidation kinetics of TGO growth is described by the parabolic rate equation. The failure of the APS-TBC system under isothermal oxidation is associated with the spallation of the top coat through propagation and coalescence of cracks along the coating interface, which is affected by the TGO growth. The solid particle erosion rate of the top coat is found to increase with impingement angle and reach the maximum erosion rate at normal impingement of particles. The erosion resistance of the APS-TBC is observed to increase after the APS-TBC specimen has been exposed at 1100 and 1150 °C for 72 h, probably due to the sintering effect on the top coat, which results in reduction of top coat porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. R.A. Miller, Current Status of Thermal Barrier Coatings—An Overview, Surf. Coat. Technol., 1987, 30(1), p 1-11

    Article  CAS  Google Scholar 

  2. A. Bolcavage, A. Feuerstein, J. Foster, and P. Moore, Thermal Shock Testing of Thermal Barrier Coating/Bondcoat Systems, J. Mater. Eng. Perform., 2004, 13(4), p 389-397

    Article  CAS  Google Scholar 

  3. N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications (280), Science, 2002, 296(5566), p 280-284

    Article  CAS  Google Scholar 

  4. F. Tang, L. Ajdelsztajn, G.E. Kim, V. Provenzano, and J.M. Schoenung, Effects of Variations in Coating Materials and Process Conditions on the Thermal Cycle Properties of NiCrAlY/YSZ Thermal Barrier Coatings, Mater. Sci. Eng. A, 2006, 425(1–2), p 94-106

    Article  Google Scholar 

  5. E.N. Sup and F. Spcts, Modeling of the Residual Stresses and Their Effects on the TBC System after Thermal Cycling Using Finite Element Method, Ceram. Mater., 2010, 62(3), p 275-279

    Google Scholar 

  6. X. Chen, J.W. Hutchinson, M.Y. He, and A.G. Evans, On the Propagation and Coalescence of Delamination Cracks in Compressed Coatings with Application to Thermal Barrier Systems, Acta Mater., 2003, 51(7), p 2017-2030

    Article  CAS  Google Scholar 

  7. M.Y. He, J.W. Hutchinson, and A.G. Evans, Simulation of Stresses and Delamination in a Plasma-Sprayed Thermal Barrier System upon Thermal Cycling, Mater. Sci. Eng., A, 2003, 345(1–2), p 172-178

    Article  Google Scholar 

  8. L. Remy, C. Guerre, I. Rouzou, and R. Molins, Assessment of TBC Oxidation-Induced Degradation Using Compression Tests, Oxid. Met., 2014, 81(1–2), p 3-15

    Article  CAS  Google Scholar 

  9. P.J.R. Smith, M.P. Taylor, H.E. Evans, N.E. Murray, C. McMillan, and J. Cherrington, The Oxidation and Interdiffusion of a Chromia Forming Multilayered TBC System, Oxid. Met., 2014, 81(1–2), p 47-55

    Article  CAS  Google Scholar 

  10. X.L. Li, X. Huang, Q. Yang, and Z.L. Tang, Effects of Substrate Material and TBC Structure on the Cyclic Oxidation Resistance of TBC Systems, Surf. Coat. Technol., 2014, 258, p 49-61

    Article  CAS  Google Scholar 

  11. W.J. Quadakkers, V. Shemet, D. Sebold, R. Anton, E. Wessel, and L. Singheiser, Oxidation Characteristics of a Platinized MCrAlY Bond Coat for TBC Systems during Cyclic Oxidation at 1000 °C, Surf. Coat. Technol., 2005, 199(1), p 77-82

    Article  CAS  Google Scholar 

  12. G. Moskal, L. Swadzba, B. Mendala, M. Goral, and M. Hetmanczyk, Degradation of the TBC System during the Static Oxidation Test, J. Micro., 2010, 237(3), p 450-455

    Article  CAS  Google Scholar 

  13. W.R. Chen, X.J. Wu, B. Marple, and P. Patnaik, Oxidation and Crack Nucleation/Growth in an Air-Plasma-Sprayed Thermal Barrier Coating with NiCrAlY Bond Coat, Surf. Coat. Technol., 2005, 197, p 109-115

    Article  CAS  Google Scholar 

  14. W.R. Chen, X.J. Wu, B. Marple, and P. Patnaik, The Growth and Influence of Thermally Grown Oxide in a Thermal Barrier Coating, Surf. Coat. Technol., 2006, 201, p 1074-1079

    Article  CAS  Google Scholar 

  15. W.R. Chen, X.J. Wu, B. Marple, R. Lima, and P. Patnaik, Pre-Oxidation and TGO Growth Behaviour of an Air-Plasma-Sprayed Thermal Barrier Coating, Surf. Coat. Technol., 2008, 202, p 3787-3796

    Article  CAS  Google Scholar 

  16. X.J. Wu, The Crack Number Density Theory on Air-Plasma-Sprayed Thermal Barrier Coating, Surf. Coat. Technol., 2019, 358, p 347-352

    Article  CAS  Google Scholar 

  17. M.F. Hussain and W. Tabakoff, Dynamic Behaviour of Solid Particles Suspended by Polluted Flow in a Turbine Stage, J. Aircraft, 1973, 10, p 434-440

    Article  Google Scholar 

  18. W. Tabakoff, A. Hamed, and B. Beacher, Investigation of Gas Particle Flow in an Erosion Wind Tunnel, Wear, 1983, 86, p 73-88

    Article  Google Scholar 

  19. R.G. Wellman and J.R. Nicholls, Some Observations on the Erosion Mechanism of EB-PVD TBCs, Wear, 2000, 242, p 89-96

    Article  CAS  Google Scholar 

  20. J.R. Nicholls, Y. Jaslier, and D. Rickerby, Erosion and Foreign Object Damage of Thermal Barrier Coatings, Mater. Sci. Forum, 1997, 251–254, p 935-948

    Article  Google Scholar 

  21. R. Wellman and J. Nicholls, Erosion, Corrosion and Erosion-Corrosion of EB PVD Thermal Barrier Coatings, Tribo. Inter., 2008, 41(7), p 657-662

    Article  CAS  Google Scholar 

  22. H. Eaton and R. Novak, Particulate Erosion of Plasma-Sprayed Porous Ceramic, Surf. Coat. Technol., 1987, 30(1), p 41-50

    Article  CAS  Google Scholar 

  23. M. Saremi, A. Afrasiabi, and A. Kobayashi, Microstructural Analysis of YSZ and YSZ/Al2O3 Plasma Sprayed Thermal Barrier Coatings after High Temperature Oxidation, Surf. Coat. Technol., 2008, 202(14), p 3233-3238

    Article  CAS  Google Scholar 

  24. S. Zhou, Z. Xiong, J. Lei, X. Dai, T. Zhang, and C. Wang, Influence of Milling Time on the Microstructure Evolution and Oxidation Behavior of NiCrAlY Coatings by Laser Induction Hybrid Cladding, Corr. Sci., 2016, 103, p 105-116

    Article  Google Scholar 

  25. D. Monceau and B. Pieraggi, Determination of Parabolic Rate Constants from a Local Analysis of Mass-Gain Curves, Oxid. Met., 1989, 50(5–6), p 477-493

    Google Scholar 

  26. R.D. Jackson, M.P. Taylor, H.E. Evans, and X.H. Li, Oxidation Study of an EB-PVD MCrAlY Thermal Barrier Coating System, Oxid. Met., 2011, 76(3–4), p 259-271

    Article  CAS  Google Scholar 

  27. X. Liu, T. Wang, C. Li, Z. Zheng, and Q. Li, Microstructural Evolution and Growth Kinetics of Thermally Grown Oxides in Plasma Sprayed Thermal Barrier Coatings, Progress in Natural Science: Mater. Inter., 2016, 26(1), p 103-111

    Article  CAS  Google Scholar 

  28. A.C. Karaoglanli and A. Turk, Isothermal Oxidation Behavior and Kinetics of Thermal Barrier Coatings Produced by Cold Gas Dynamic Spray Technique, Surf. Coat. Technol., 2017, 318, p 72-81

    Article  CAS  Google Scholar 

  29. K. Schlichting, N. Padture, E. Jordan, and M. Gell, Failure Modes in Plasma-Sprayed Thermal Barrier Coatings, Mater. Sci. Eng. A, 2003, 342(1–2), p 120-130

    Article  Google Scholar 

  30. E. Busso, J. Lin, and S. Sakurai, A Mechanistic Study of Oxidation-Induced Degradation in a Plasma-Sprayed Thermal Barrier Coating System, Acta Materialia, 2001, 49(9), p 1529-1536

    Article  CAS  Google Scholar 

  31. N. Krishnamurthy, M. Murali, B. Venkataraman, and P. Mukunda, Characterization and Solid Particle Erosion Behavior of Plasma Sprayed Alumina and Calcia-Stabilized Zirconia Coatings on Al-6061 Substrate, Wear, 2012, 274–275, p 15-27

    Article  Google Scholar 

  32. P.C. Tsai, J.H. Lee, and C.L. Chang, Improving the Erosion Resistance of Plasma-Sprayed Zirconia Thermal Barrier Coatings by Laser Glazing, Surf. Coat. Technol., 2007, 202(4–7), p 719-724

    Article  CAS  Google Scholar 

  33. A.W. Ruff and S.M. Wiederhorn, Erosion by Solid Particle Impact, Treatise Mater. Sci. Technol., 1979, 161, p 69-126

    Google Scholar 

  34. R. Mcpherson, A Review of Microstructure and Properties of Plasma Sprayed Ceramic Coatings, Surf. Coat. Technol., 1989, 39–40, p 173-181

    Article  Google Scholar 

  35. J.R.T. Branco, R. Gansert, S. Sampath, C.C. Berndt, and H. Herman, Solid Particle Erosion of Plasma Sprayed Ceramic Coatings, Mater. Res., 2004, 7(1), p 147-153

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from Natural Science & Engineering Research Council of Canada (NSERC), Defense Technology and Sustainment Program of National Research Council Canada and both financial and in-kind support from Kennametal Stellite Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Essa, S.K., Chen, K., Liu, R. et al. Failure Mechanisms of APS-YSZ-CoNiCrAlY Thermal Barrier Coating Under Isothermal Oxidation and Solid Particle Erosion. J Therm Spray Tech 30, 424–441 (2021). https://doi.org/10.1007/s11666-020-01124-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01124-4

Keywords

Navigation