Skip to main content
Log in

The utilization of waste cooking palm oil as a green carbon source for the growth of multilayer graphene

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Waste cooking palm oil (WCPO) has been utilized as a green carbon source for the synthesization of graphene by double thermal chemical vapor deposition. The WCPO was placed in the first furnace (precursor furnace) whereas nickel was placed in the second furnace (deposition furnace). The deposition temperatures were varied between 850 and 1100 °C. Raman results reveal the highest 2-D peak for the sample synthesized at 1000 °C, which indicates the high-quality formation of graphene. Besides, the sample also shows good crystallinity with a sharp peak at 26.8° which represents the hexagonal graphite structure and the introduction of graphene sheet formation. On the other hand, the FESEM image displays hexagonal structures since the graphene layers were formed after the precipitation of the carbon. Meanwhile, the UV-Vis result shows the highest reflectance in the visible light region which indicates the presence of the graphene layer on Ni.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Suriani, A.B., Nor, R., Rusop, M.: Vertically aligned carbon nanotubes synthesized from waste cooking palm oil. J Ceram Soc Japan. 118, 963–968 (2010)

    CAS  Google Scholar 

  2. Tsai, T.-Y., Tai, N.-H., Chen, K.C., Lee, S.H., Chan, L.H., Chang, Y.Y.: Growth of vertically aligned carbon nanotubes on glass substrate at 450 °C through the thermal chemical vapor deposition method. Diam Relat Mater. 18, 307–311 (2009)

    CAS  Google Scholar 

  3. Mittal, G., Dhand, V., Rhee, K.Y., Park, S.-J., Lee, W.R.: A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem. 21, 11–25 (2015)

    CAS  Google Scholar 

  4. K. Kanahashi, M. Ishihara, M. Hasegawa, H. Ohta and T. Takenobu, "Giant power factors in p- and n-type large-area graphene films on a flexible plastic substrate". Npj 2D Mater. Appl., vol. 3, p. 44, 2019

  5. Sharma, S., Kalita, G., Hirano, R., Hayashi, T., Tanemura, M.: Influence of gas composition on the formation of graphene domain synthesized from camphor. Mater Lett. 93, 258–262 (2013)

    CAS  Google Scholar 

  6. Kumar, R., Singh, R.K., Kumar, P., Dubey, P.K., Tiwari, R.S., Srivastava, O.N.: Clean and efficient synthesis of graphene nanosheets and rectangular aligned-carbon nanotubes bundles using green botanical hydrocarbon precursor: sesame oil. Sci AdvMater. 6, 76–83 (2014)

    CAS  Google Scholar 

  7. Salifairus, M.J., Hamid, S.B.A., Soga, T., Alrokayan, S.A.H., Khan, H.A., Rusop, M.: Structural and optical properties of graphene from green carbon source via thermal chemical vapor deposition. J Mater Res. 31, 1947–1956 (2016)

    CAS  Google Scholar 

  8. Jacob, M.V., Rawat, R.S., Ouyang, B., Bazaka, K., Kumar, D.S., Taguchi, D.: Catalyst-free plasma enhanced growth of graphene from sustainable sources. Nano Lett. 15, 5702–5708 (2015)

    CAS  Google Scholar 

  9. Sharma, S., Kalita, G., Hirano, R., Shinde, S.M., Papon, R., Ohtani, H.: Synthesis of graphene crystals from solid waste plastic by chemical vapor deposition. Carbon. 72, 66–73 (2014)

    CAS  Google Scholar 

  10. Sanli, H., Canakci, M., Alptekin, E.: Characterization of waste frying oils obtained from different facilities. Bioenergy Technol. 8, 479–485 (2011)

    Google Scholar 

  11. Mayne, M., Grobert, N., Terrones, M., Kamalakaran, R., Rühle, M., Kroto, H.W., Walton, D.R.M.: Pyrolytic production of aligned carbon nanotubes from homogeneously dispersed benzene-based aerosols. Chem Phys Lett. 338, 101–107 (2001)

    CAS  Google Scholar 

  12. N. Abdullah and F. Sulaiman, "The oil palm wastes in Malaysia," in Biomass now: sustainable growth and use, 1st ed., InTech, Croatia, pp. 75–93, 2013

  13. Zaharudin, R.R.N.A., Esivan, S.M.M., Othman, N., Idris, A.: Review on the potential use of waste cooking palm oil in the production of high oleic palm oil via enzymatic acidolysis. J Teknol. 12, 85–99 (2016)

    Google Scholar 

  14. Refaat, A.A.: Different techniques for the production of biodiesel from waste vegetable oil. Int J Environ Sci Tech. 7, 183–213 (2010)

    CAS  Google Scholar 

  15. Phan, A.N., Phan, T.M.: Biodiesel production from waste cooking oils. Fuel. 87, 3490–3496 (2008)

    CAS  Google Scholar 

  16. Corro, G., Tellez, N., Jimenez, T., Tapia, A., Banuelo, F., Vazquez-Cuchillo, O.: Biodiesel from waste frying oil. Two step process using acidified SiO2 for esterification step. Catal Today. 166, 116–122 (2011)

    CAS  Google Scholar 

  17. Lapuerta, M., Herreros, J.M., Lyons, L.L., Contreras, R.G., Briceño, Y.: Effect of the alcohol type used in the production of waste cooking oil biodiesel on diesel performance and emissions. Fuel. 87, 3161–3169 (2008)

    CAS  Google Scholar 

  18. Mancini, A., Imperlini, E., Nigro, E., Montagnese, C., Daniele, A., Orrù, S., Buono, P.: Biological and nutritional properties of palm oil and palmitic acid: effects on health. Molecules. 20, 17339–17361 (2015)

    CAS  Google Scholar 

  19. Meesuk, L., Seammai, S.: The use of perlite to remove dark colour from repeatedly used palm oil. Sci Asia. 36, 33–39 (2010)

    CAS  Google Scholar 

  20. Fang, L., Yuan, W., Wang, B., Xiong, Y.: Growth of graphene on cu foils by microwave plasma chemical vapor deposition: the effect of in-situ hydrogen plasma post-treatment. Appl Surf Sci. 383, 28–32 (2016)

    CAS  Google Scholar 

  21. Rajagopalan, B., Chung, J.S.: Reduced chemically modified graphene oxide for supercapacitor electrode. Nanoscale Res Lett. 9, 1–10 (2014)

    CAS  Google Scholar 

  22. Aunkor, M.T.H., Mahbubul, I.M., Saidur, R., Metselaar, H.S.C.: The green reduction of graphene oxide. RSC Adv. 6, 27807–27828 (2016)

    CAS  Google Scholar 

  23. Perumbilavil, S., Sankar, P., Priya Rose, T., Philip, R.: White light Z-scan measurements of ultrafast optical nonlinearity in reduced graphene oxide nanosheets in the 400–700 nm region. Appl Phys Lett. 107, 051104 (2015)

    Google Scholar 

  24. Kudin, K.N., Ozbas, B., Schniepp, H.C., Prud'homme, R.K., Aksay, I.A., Car, R.: Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8, 36–41 (2007)

    Google Scholar 

  25. Calizo, I., Bejenari, I., Rahman, M., Liu, G., Balandin, A.A.: Ultraviolet raman microscopy of single and multilayer graphene. J Appl Phys. 106, 043509 (2009)

    Google Scholar 

  26. Dong, X., Wang, P., Fang, W., Su, C.-Y., Chen, Y.-H., Li, L.-J., Huang, W., Chen, P.: Growth of large-sized graphene thin-films by liquid precursor-based chemical vapor deposition under atmospheric pressure. Carbon. 49, 3672–3678 (2011)

    CAS  Google Scholar 

  27. Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M.S., Kong, J.: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009)

    CAS  Google Scholar 

  28. Narula, U., Tan, C.M., Lai, C.S.: Growth mechanism for low temperature PVD graphene synthesis on copper using amorphous carbon. Sci Rep. 7, 44112 (2017)

    Google Scholar 

  29. Lee, H.C., Liu, W.-W., Chai, S.-P., Mohamed, A.R., Lai, C.W., Khe, C.-S., Voon, C.H., Hashim, U., Hidayah, N.M.S.: Synthesis of single-layer graphene: a review of recent development. Procedia Chem. 19, 916–921 (2016)

    CAS  Google Scholar 

  30. Nanda, S.S., Kim, M.J., Yeom, K.S., An, S.S.A., Ju, H., Yi, D.K.: Raman spectrum of graphene with its versatile future perspectives. TrAC Trends Anal Chem. 80, 125–131 (2016)

    CAS  Google Scholar 

  31. Mishra, A.K., Ramaprabhu, S.: Carbon dioxide adsorption in graphene sheets. AIP Adv. 1, 032152 (2011)

    Google Scholar 

  32. Jabbar, A., Yasin, G., Khan, W.Q., Anwar, M.Y., Korai, R.M., Nizam, M.N., Muhyodin, G.: Electrochemical deposition of nickel graphene composite coatings: effect of deposition temperature on its surface morphology and corrosion resistance. RSC Adv. 7, 31100–31109 (2017)

    CAS  Google Scholar 

  33. Raghavan, N., Thangavel, S., Venugopal, G.: Enhanced photocatalytic degradation of methylene blue by reduced graphene-oxide/titanium dioxide/zinc oxide ternary nanocomposites. Mater Sci Semicond Process. 30, 321–329 (2015)

    CAS  Google Scholar 

  34. Li, W.Z., Wen, J.G., Ren, Z.F.: Effect of temperature on growth and structure of carbon nanotubes by chemical vapor deposition. Appl Phys A Mater Sci Process. 74, 397–402 (2002)

    CAS  Google Scholar 

  35. Chae, S.J., Güneş, F., Kim, K.K., Kim, E.S., Han, G.H., Kim, S.M., Shin, H.-J., Yoon, S.-M., Choi, J.-Y., Park, M.H., Yang, C.W., Pribat, D., Lee, Y.H.: Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation. Adv Mater. 21, 2328–2333 (2009)

    CAS  Google Scholar 

  36. Vinayan, B.P., Nagar, R., Ramaprabhu, S.: Solar light assisted green synthesis of palladium nanoparticle decorated nitrogen doped graphene for hydrogen storage application. J Mater Chem A. 1, 11192–11199 (2013)

    CAS  Google Scholar 

  37. Liu, P., White, K.L., Sugiyama, H., Xi, J., Higuchi, T., Hoshino, T., Ishige, R., Jinnai, H., Takahara, A., Sue, H.-J.: Influence of trace amount of well-dispersed carbon nanotubes on structural development and tensile properties of polypropylene. Macromolecules. 46, 463–473 (2013)

    CAS  Google Scholar 

  38. Gutierrez, G., Le Normand, F., Muller, D., Aweke, F., Speisser, C., Antoni, F., Le Gall, Y., Lee, C.S., Cojocaru, C.S.: Multi-layer graphene obtained by high temperature carbon implantation into nickel films. Carbon. 66, 1–10 (2014)

    CAS  Google Scholar 

  39. Zhang, H., Feng, P.X.: Fabrication and characterization of few-layer graphene. Carbon. 48, 359–364 (2010)

    CAS  Google Scholar 

  40. Song, X., Song, L., Chen, X., Zhang, T.: The characterization of graphene prepared using a nickel film catalyst pre-deposited to fused silica. RSC Adv. 6, 22244–22249 (2016)

    CAS  Google Scholar 

  41. Ahmed, S.F., Khalid, M., Amin, N., Rashmi, W.: Investigation of rheological and corrosion properties of graphene-based eutectic salt. J Mater Sci. 53, 692–707 (2018)

    CAS  Google Scholar 

  42. Kumar, M.K., Jha, N.S., Mohan, S., Jha, S.K.: Reduced graphene oxide-supported nickel oxide catalyst with improved CO tolerance for formic acid electrooxidation. Int J Hydrog Energy. 39, 12572–12577 (2014)

    CAS  Google Scholar 

  43. Chaitoglou, S., Bertran, E.: Effect of temperature on graphene grown by chemical vapor deposition. J Mater Sci. 52, 8348–8356 (2017)

    CAS  Google Scholar 

  44. Antony, R.P., Preethi, L.K., Gupta, B., Mathews, T., Dash, S., Tyagi, A.K.: Efficient electrocatalytic performance of thermally exfoliated reduced graphene oxide-Pt hybrid. Mater Res Bull. 70, 60–67 (2015)

    CAS  Google Scholar 

  45. Jafari, A., Ghoranneviss, M., Gholami, M., Mostahsan, N.: The role of deposition temperature and catalyst thickness in graphene domains on cu. Int Nano Lett. 5, 199–204 (2015)

    CAS  Google Scholar 

  46. Ghorannevis, Z., Jafari, A., Alipour, R., Ghoranneviss, M.: The effects of growth time on WO3 nanostructure synthesized by HFCVD method. J Fusion Energ. 34, 1157–1161 (2015)

    CAS  Google Scholar 

  47. Wu, C., Li, F., Chen, W., Veeramalai, C.P., Ooi, P.C., Guo, T.: Electromagnetic induction heating for single crystal graphene growth: morphology control by rapid heating and quenching. Sci Rep. 5, 9034 (2015)

    CAS  Google Scholar 

  48. J.M. García, R. He, M.P. .Jiang, P. Kim, L.N. Pfeiffer and A. Pinczuk, "Multilayer graphene grown by precipitation upon cooling of nickel on diamond". Carbon, vol. 49, pp. 1006–1012, 2011

  49. C.R. Woods, L. Britnell, A. Eckmann, R.S. Ma, J.C. Lu, H.M. Guo, X. Lin, G.L. Yu, Y. Cao, R.V. Gorbachev, A.V. Kretinin, J. Park, L.A. Ponomarenko, M.I. Katsnelson, Y.N. Gornostyrev, K. Watanabe, T. Taniguchi, C. Casiraghi, H-J. Gao, A. K. Geim and K.S. Novoselov, "Commensurate–incommensurate transition in graphene on hexagonal boron nitride". Nat Phys, vol. 10, pp. 451–456, 2014

  50. Hong, R., Ji, J., Tao, C., Zhang, D., Zhang, D.: Fabrication of Au/graphene oxide/Ag sandwich structure thin film and its tunable energetics and tailorable optical properties. AIMS Mater Sci. 4, 223–230 (2017)

    Google Scholar 

  51. Mennella, V., Colangeli, L., Bussoletti, E., Merluzzi, P., Monaco, G., Palumbo, P., Rotundi, A.: Laboratory experiments on cosmic dust analogues: the structure of small carbon grains. Planet Space Sci. 43, 1217–1221 (1995)

    CAS  Google Scholar 

  52. Chen, Z., Zhang, N., Xu, Y.-J.: Synthesis of graphene–ZnO nanorod nanocomposites with improved photoactivity and anti-photocorrosion. CrystEngComm. 15, 3022–3030 (2013)

    CAS  Google Scholar 

  53. Lai, Q., Zhu, S., Luo, X., Zou, M., Huang, S.: Ultraviolet-visible spectroscopy of graphene oxides. AIP Adv. 2, 032146 (2012)

    Google Scholar 

  54. Mun, J.H., Hwang, C., Lim, S.K., Cho, B.J.: Optical reflectance measurement of large-scale graphene layers synthesized on nickel thin film by carbon segregation. Carbon. 48, 447–451 (2010)

    CAS  Google Scholar 

  55. Russo, C., Stanzione, F., Alfè, M., Ciajolo, A., Tregrossi, A.: Spectral analysis in the UV-visible range for revealing the molecular form of combustion- generated carbonaceous species. Combust Sci Technol. 184, 1219–1231 (2012)

    CAS  Google Scholar 

  56. Agorku, E.S., Mamo, M.A., Mamba, B.B., Pandey, A.C., Mishra, A.K.: Palladium-decorated zinc sulfide/reduced graphene oxide nanocomposites for enhanced visible light-driven photodegradation of indigo carmine. Mater Sci Semicond Process. 33, 119–126 (2015)

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mrs. Ts. Irmaizatussyehdany Buniyamin (Senior Research Officer), Mr. Ts. Salifairus Mohammad Jafar (UiTM Senior Science Officer), Mr. Mohd Azlan Jaafar (UiTM assistant engineer), Mr. Suhaimi Ahmad (UiTM assistant engineer), and Mr. Muhamad Faizal Abd Halim (Assistant Research Officer) for their kind support on this research.

Funding

This work was supported by Grant Nos. 600-IRMI/FRGS-RACER 5/3 (102/2019) and 600-RMIS/1/RAGS 5/3. The study also received financial support from the Research Management Centre (RMC), Universiti Teknologi MARA (UiTM), and the Ministry of Higher Education Ministry (MoHE), Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Malek.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malek, M.F., Robaiah, M., Suriani, A.B. et al. The utilization of waste cooking palm oil as a green carbon source for the growth of multilayer graphene. J Aust Ceram Soc 57, 347–358 (2021). https://doi.org/10.1007/s41779-020-00539-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-020-00539-0

Keywords

Navigation