Skip to main content
Log in

Influence of Mn substitution on crystal structure and magnetic properties of Y2Zr1-xTi1-xMn2xO7 (x = 0.0, 0.05, 0.10) family of pyrochlore oxides

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The present paper deals with the effect of Mn doping on structural and magnetic properties of Y2Zr1-xTi1-xMn2xO7 (x = 0.0, 0.05, 0.10) compounds. All the samples are single phase and crystallize in the cubic system with Fd-3m space group. Both lattice parameter a and cell volume V decrease with Mn substitution because of the smaller ionic radius of Mn4+ than Zr4+ and Ti4+. No significant differences between zero field-cooled (ZFC) and field-cooled (FC) curves are evident, demonstrating that the samples exhibit no magnetic ordering or spin glass-like transition. Both the Mn-doped phases exhibit antiferromagnetic behavior, which may possibly be due to the presence of super-exchange (SE) Mn4+–O2−–Mn4+ interactions. Small magnetic hysteresis loops are observed for the Mn-doped phases suggesting the presence of weak ferromagnetic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chamberlain, S.L., Hess, S., Corruccini, L.R.: Dipolar magnetic order in the pyrochlore structure. Phys. Lett. A. 323, 310–314 (2004)

    Article  CAS  Google Scholar 

  2. Raju, N.P., Dion, M., Gingras, M.J.P., Mason, T.E., Greedan, J.E.: Transition to long-range magnetic order in the highly frustrated insulating pyrochlore antiferromagnet Gd2Ti2O7. Phys. Rev. B. 59, 14489–14498 (1999)

    Article  CAS  Google Scholar 

  3. Lian, J., Wang, L.M., Wang, S.X., Chen, J., Boatner, L.A., Ewing, R.C.: Nanoscale manipulation of pyrochlore: new nanocomposite ionic conductors. Phys. Rev. Lett. 87(1–4), 145901 (2001)

    Article  CAS  Google Scholar 

  4. Poulsen, F.W., Glerup, M., Holtappels, P.: Structure, Raman spectra and defect chemistry modelling of conductive pyrochlore oxides. Solid State Ionics. 135, 595–602 (2000)

    Article  CAS  Google Scholar 

  5. Wilde, P.J., Catlow, C.R.: Molecular dynamics study of the effect of doping and disorder on diffusion in gadolinium zirconate. Solid State Ionics. 112, 185–195 (1998)

    Article  CAS  Google Scholar 

  6. Dong, X.W., Wang, K.F., Luo, S.J., Wan, J.G., Liu, J.M.: Coexistence of magnetic and ferroelectric behaviors of pyrochlore Ho2Ti2O7. J. Appl. Phys. 106(1–4), 104101 (2009)

    Article  Google Scholar 

  7. Mirsaneh, M., Hayden, B.E., Furman, E., Perini, S., Lanagan, M.T., Reaney, I.M.: High dielectric tunability in lead niobate pyrochlore films. Appl. Phys. Lett. 100(1–3), 082901 (2012)

    Article  Google Scholar 

  8. Wang, S.X., Wang, L.M., Ewing, R.C., Kutty, K.G.: Ion irradiation of rare-earth and yttrium-titanate-pyrochlores. Nucl. Instr. Meth. Phys. Res. B. 169, 135–140 (2000)

    Article  CAS  Google Scholar 

  9. Reid, D.P., Stennett, M.C., Hyatt, N.C.: The fluorite related modulated structures of the Gd2(Zr2−xCex)O7 solid solution: an analogue for Pu disposition. J. Solid State Chem. 191, 2–9 (2012)

    Article  CAS  Google Scholar 

  10. Chen, Z.S., Gong, W.P., Chen, T.F., Li, S.L.: Synthesis and characterization of pyrochlore-type yttrium titanate nanoparticles by modified sol-gel method. Bull. Mater. Sci. 34, 429–434 (2011)

    Article  CAS  Google Scholar 

  11. Moon, P.K., Tuller, H.L.: Ionic conduction in the Gd2Ti2O7−Gd2Zr2O7 system. Solid State Ionics. 28, 470–474 (1988)

    Article  Google Scholar 

  12. Subramanian, M.A., Aravamudan, G., Rao, G.S.: Oxide pyrochlores—a review. Prog. Solid State Chem. 15, 55–143 (1983)

    Article  CAS  Google Scholar 

  13. Wang, J., Nakamura, A., Takeda, M.: Structural properties of the fluorite-and pyrochlore-type compounds in the Gd2O3–ZrO2 system xGdO1.5–(1−x)ZrO2 with 0.18≤ x≤ 0.62. Solid State Ionics. 164, 185–191 (2003)

    Article  CAS  Google Scholar 

  14. Mandal, B.P., Garg, N., Sharma, S.M., Tyagi, A.K.: Preparation, XRD and Raman spectroscopic studies on new compounds RE2Hf2O7 (RE= Dy, Ho, Er, Tm, Lu, Y): pyrochlores or defect-fluorite? J. Solid State Chem. 179, 1990–1994 (2006)

    Article  CAS  Google Scholar 

  15. Muromura, T., Hinatsu, Y.: Fluorite type phase in nuclear waste ceramics with high zirconia and alumina contents. J. Nucl. Mater. 151, 55–62 (1987)

    Article  CAS  Google Scholar 

  16. Shinozaki, K., Miyauchi, M., Kuroda, K., Sakurai, O., Mizutani, N., Kato, M.: Oxygen-ion conduction in the Sm2Zr2O7 pyrochlore phase. J. Am. Ceram. Soc. 62, 538–539 (1979)

    Article  CAS  Google Scholar 

  17. Harris, M.J., Bramwell, S.T., McMorrow, D.F., Zeiske, T.H., Godfrey, K.W.: Geometrical frustration in the ferromagnetic pyrochlore Ho2Ti2O7. Phys. Rev. Lett. 79, 2554–2557 (1997)

    Article  CAS  Google Scholar 

  18. Ramirez, A.P., Hayashi, A., Cava, R.J., Siddharthan, R., Shastry, B.S.: Zero-point entropy in ‘spin ice’. Nature. 399, 333–335 (1999)

    Article  CAS  Google Scholar 

  19. Gingras, M.J., Den Hertog, B.C., Faucher, M., Gardner, J.S., Dunsiger, S.R., Chang, L.J., Gaulin, B.D., Raju, N.P., Greedan, J.E.: Thermodynamic and single-ion properties of Tb3+ within the collective paramagnetic-spin liquid state of the frustrated pyrochlore antiferromagnet Tb2Ti2O7. Phys. Rev. B. 62, 6496–6511 (2000)

    Article  CAS  Google Scholar 

  20. Kumar, B.V., Velchuri, R., Devi, V.R., Sreedhar, B., Prasad, G., Prakash, D.J., Kanagaraj, M., Arumugam, S., Vithal, M.: Preparation, characterization, magnetic susceptibility (Eu, Gd and Sm) and XPS studies of Ln2ZrTiO7 (Ln= La, Eu, Dy and Gd). J. Solid State Chem. 184, 264–272 (2011)

    Article  CAS  Google Scholar 

  21. Kennedy, B.J., Hunter, B.A.: Structural and magnetic studies of manganese-containing pyrochlore oxides. J. Alloys Compd. 302, 94–100 (2000)

    Article  Google Scholar 

  22. Reimers, J.N., Greedan, J.E., Kremer, R.K., Gmelin, E., Subramanian, M.A.: Short-range magnetic ordering in the highly frustrated pyrochlore Y2Mn2O7. Phys. Rev. B. 43, 3387–3394 (1991)

    Article  CAS  Google Scholar 

  23. Raju, N.P., Greedan, J.E., Subramanian, M.A.: Magnetic, electrical, and small-angle neutron-scattering studies of possible long-range order in the pyrochlores Tl2Mn2O7 and In2Mn2O7. Phys. Rev. B. 49, 1086–1091 (1994)

    Article  CAS  Google Scholar 

  24. Shimakawa, Y., Kubo, Y., Manako, T.: Giant magnetoresistance in Ti2Mn2O7 with the pyrochlore structure. Nature. 379, 53–55 (1996)

    Article  CAS  Google Scholar 

  25. Liang, D., Liu, H., Ling, L., Zhang, L., Zhang, C., Zhang, Y.: Magnetic and magnetoelectric properties of hybrid-frustrated Bi2Ir2−xMnxO7 pyrochlores. Solid State Commun. 278, 36–41 (2018)

    Article  CAS  Google Scholar 

  26. Liang, D., Liu, H., Liu, N., Ling, L., Han, Y., Zhang, L., Zhang, C.: Structural, magnetic and electrical properties in the pyrochlore oxide Bi2−xCaxIr2O7−δ. Ceram. Int. 42, 4562–4566 (2016)

    Article  CAS  Google Scholar 

  27. Feng, Y., Zhu, S., Bian, J., Chen, F., Chen, S., Ma, C., Liu, H., Fang, B.: Magnetic and electrical transport properties of the pyrochlore iridate Bi2-xCoxIr2O7. J. Magn. Magn. Mater. 451, 283–287 (2018)

    Article  CAS  Google Scholar 

  28. Karamat, N., Ali, I., Aziz, A., Sher, M., Ashiq, M.N.: Electrical and dielectric studies of substituted holmium based pyrochlore zirconates nanomaterials. J. Alloys Compd. 652, 83–90 (2015)

    Article  CAS  Google Scholar 

  29. Zhang, A., Lu, M., Yang, Z., Zhou, G., Zhou, Y.: Systematic research on RE2Zr2O7 (RE = La, Nd, Eu and Y) nanocrystals: preparation, structure and photoluminescence characterization. Solid State Sci. 10, 74–81 (2008)

    Article  CAS  Google Scholar 

  30. Klug, H.P., Alexander, L.E.: X-ray diffraction procedures; for polycrystalline and amorphous materials. John Wiley and Sons Inc, New York (1954)

    Google Scholar 

  31. Gómez-Pérez, A., Prado-Gonjal, J., Muñoz-Gil, D., Andrada-Chacón, A., Sánchez-Benítez, J., Morán, E., Azcondo, M.T., Amador, U., Schmidt, R.: Anti-site disorder and physical properties in microwave synthesized RE2Ti2O7 (RE= Gd, Ho) pyrochlores. RSC Adv. 5, 85229–85241 (2015)

    Article  Google Scholar 

  32. Kittel, C., McEuen, P.: Introduction to solid state physics, pp. 404–406. Wiley, NewYork (1986)

    Google Scholar 

  33. Singh, D., Mahajan, A.: Effect of A-site cation size on the structural, magnetic, and electrical properties of La1−xNdxMn0.5Cr0.5O3 perovskites. J. Alloys Compd. 644, 172–179 (2015)

    Article  CAS  Google Scholar 

  34. Sharma, N.D., Sharma, S., Choudhary, N., Verma, M.K., Singh, D.: Comparative study of La0.5Nd0.2Ca0.3–xKxMnO3 (x = 0.0 and 0.05) nanoparticles: Effect of A-cation size and calcination temperature. Ceram. Int. 45, 13637–13646 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devinder Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no confict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, M.K., Singh, D. Influence of Mn substitution on crystal structure and magnetic properties of Y2Zr1-xTi1-xMn2xO7 (x = 0.0, 0.05, 0.10) family of pyrochlore oxides. J Aust Ceram Soc 57, 339–345 (2021). https://doi.org/10.1007/s41779-020-00543-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-020-00543-4

Keywords

Navigation